
G22.2262 Data Communications
Lecture Notes Fall 1983

with revisions from

G22.2262 Data Communications
Lecture Notes Fall 1990

Herbert J. Bernstein
Max Goldstein

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

251 Mercer Street
New York, New York 10012

c⃝ Copyright 1982, 1983, 1984, 1991
Herbert J. Bernstein & Max Goldstein

Note: This is a resetting of this document in LaTex by the first author in January 2011 to
make a reference copy available on the web.

i

ii

Acknowledgement

Frances C. Bernstein spent many hours reading and rereading these notes and our “Data
Communications” notes. Without her efforts the number of errors in spelling, grammar
and style would have been far greater than that which remains. Our sincere thanks.

Contents

1 Introductory Material 1
1.1 Overview . 2
1.2 History . 5
1.3 Layering . 6
1.4 Remedial Probability Theory . 10
1.5 Remedial Linear Algebra . 17
1.6 Physical Media . 21

2 Data Communications Line Handling 33
2.1 Data Representation . 34
2.2 Errors . 45
2.3 Error Detecting and Correcting Protocols 58

3 Networks 85
3.1 Network Overview . 85
3.2 Higher Layers . 95

iii

iv CONTENTS

Chapter 1

Introductory Material

This is a one semester course on Data Communications. We will study the tools and
techniques needed to deal with communications between computers and the real world
and to deal with communications among pieces of computer hardware. We will consider
communications systems and media, bandwidth limitations, channel sharing and grouping,
data formatting, error detection and correction, protocols, networks, I/O driver design,
operating system interfaces and human interfaces. the tools

The required reading for this course consist of these lecture notes and

Tanenbaum, Andrew S., “Computer Networks,” Prentice-Hall, Inc., Englewood Cliffs,
N.J. 1981, 517 pp., ISBN 0-13-165183-8. CR 22, 8 (Aug 81) #38,255 and CR 22,5 (May
81) #37,826.

You may also find it useful to read
Loomis, Mary E. S. “Data Communications,” Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1983, 212 pp., ISBN 0-13-196469-0.
Schwartz, M., “Computer Communication Network Design and Analysis,” Prentice-

Hall, Inc., Englewood Cliffs, N.J., 1977, 372 pp., ISBN 0-13-165134-X.
Davies, D.W. et al., “Computer Networks and their Protocols,” John Wiley & Sons,

Inc., New York, N.Y. 1979.
McNamara, John E., “Technical Aspects of Data Communications,” Digital Press, 1977,

397 pages.
van Lint, J. H., “Introduction to Coding Theory”, Springer-Verlag, New York, Heidel-

berg, Berlin, 1982, 171 pp., ISBN 0-387-11284-7 or 3-540-11284-7.
and issues of “Computer Communication Review”, a quarterly from ACM SIGCOM.
Please nore however, that assignments and exams will be based only on these notes and

on Tanenbaum.
In order to help you keep track of your progress, there will be regular homework. It is

1

2 CHAPTER 1. INTRODUCTORY MATERIAL

due the lecture after it is assigned, but it is far better turned in late than never.
There will be a protocol design and simulation project to do. The simulation can be

done in any higher level language available on the ACF CYBER. You may propose alternate
projects.

1.1 Overview

We start with data – words and images in human minds, physical characteristics of some
objects –, then transfer them by some means to computers, and expect new data in return:

Real World Data ¡==¿ Computers.
We rarely have data that is directly in computer ready form, so we introduce a repre-

sentation scheme:
Real World Data ¡==¿ Representation Scheme ¡==¿ Computers.
In most cases, the representation scheme will be a many-to-one map from the real

world to that of computers, causing a loss of information For example, we may attempt
to express complex emotions and deep feelings with a simple alphabet of 26 characters in
two cases, forming several hundred different words. Many fine distinctions will be lost.
Different emotions will be expressed with the same words and ou rlisteners will find the
words ambiguous.

Hardware

Computer hardware will consist of many physical components connected by wires, light
pipes, radio systems and other data link media. We can take the components as nodes of
a (possibly directed) graph with the media paths defining the edges.

-----------------*--------*
|\ |
| \ |
| * |
| / |
|/ |

/ \

/ \
* *

1.1. OVERVIEW 3

Software

Some of the hardware involved, e.g. computers, will be programmable. The processes
involved will usually operate with considerable autonomy, posing the same problems of
coordination as does the autonomous operation of the physical components. The transfer
of information among processes will infer logical data paths which may correspond to
physical media paths or which may exist only as abstractions.

Layering

Layering is a concept which applies both to hardware and software. It is, perhaps, best
understood first in terms of hardware. The degree of detail involved in graphing every
physical component and data link or process and logical data path between processes
is simplified by treating logically related components or processes as single entities and
inferring the virtual data links among them.

*T3 *T4
\ /
\ /
\ /

T2*---*A2-------- --------B2*---*T5
|\ \ / /|
| \ \ / / |
| \ \ / / |
| \ \/ / |
| \ /\ / |
| A3*------ --------*B1 |
| / \ |
| / \ |
| / \ |
| / \ |
|/ \|

T1*---*A1------------------------B3*---*T6

might be looked at as

4 CHAPTER 1. INTRODUCTORY MATERIAL

*T3 *T4
\ /
\ /
\ /

T2*---*A--------------------------B*---*T5
/ \

/ \
/ \
*T1 *T6

This process can then be repeated again and again, leading to a structuring of data
communications problems into layers.

Limitations

Any data link, physical or virtual, will be subject to some limitations. The physical links
are limited by the properties of the media. The virtual links are limited by the inferred
limitations of the physical links of which they are composed. There are limitations on
bandwidth (range of frequencies that can be transmitted), mean time between errors, and
quantization (number of distinct values that can be carried) among others. Thus data at
a given node can reach some other node only at some limited rate and only with some
probability that it will arrive unaltered. Schemes, or protocols, are needed to compensate
for, or at least detect, these transmission errors.

Further, data links, especially long ones, tend to be expensive leading to schemes for
sharing one physical link among several virtual links by, say, assigning certain time slots
or frequency slots to various purposes. Both error handling and channel sharing require
considerable standardization of data formats and protocols to avoid confusion among data
streams. We must be able to tell where valid data starts and ends and assign proper
ownership.

The study of schemes for connecting computer components with error detecting and
correcting protocols that are suited to channel sharing is no longer only a research subject.
Major commerical networks and international standard network protocols are a reality.
Older operating systems may require major surgery to cope with new data communications
protocols. I/O driver designs suitable for disks and tapes may break down when confronted
with data streams that arrive at unpredictable times, require immediate attention, and may
require the invocation of several cooperating processes to complete any transaction.

Finally, all work on data communications is for naught, unless it can mesh properly
with the idiosyncracies of people. Moving the position of a shift key on a terminal keyboard
can introduce more errors than power failures, thunderstorms and wire-chewing animals
combined.

1.2. HISTORY 5

1.2 History

In the broadest sense, all of computing, indeed almost all of human endeavor, involves
the communication of data, so we could take all of human history from the first grunts
between two early apes through the invention of drums, to signalling with lamps, vases
and mirrors, to the telegraph, telephone, radio and computers as our subject. Since it is
hard to credit the proper originators of the grunt, the drum, the lamp, etc., we will start
with the telegraph.

Telegraph

The basic idea of the telegraph is a switch, a wire, a current source and an electrically
driven signalling device.

./ .____________________________________
| |
| Signalling Device
|__________Current Source______________|

The idea existed long before it was possible to implement on any large scale. Early
sources of electricity were based on rubbing dissimilar materials together, providing a high
potential, low current supply. Alessandro Volta (1745-1827) of Como, Italy, in 1797 in-
vented the low potential, high current source we now call a battery (whence the unit of
electrical potential is now called the Volt). In 1819-1820 Hans Christian Oersted (1777-
1851) of Copenhagen, Denmark, discovered that an electric current can deflect a magnetic
needle. André-Marie Ampre (1775-1836) of Paris, France then developed the theory ex-
plaining the relationship between electric current and magnetism, leading to various mag-
netic needle and bar galvanoscope telegraphs. The unit of electrical current is named in
honor of Ampère.

By 1832, enough engineering development had been done by others for Samuel F.
B. Morse (1791-1872) of New York to start work on his telegraph, which saw its first
major intercity implementation (37 miles) between Baltimore and Washington in 1844.
Royal E. House (1814-1895) in 1846 invented a printing telegraph with a 28 key keyboard.
David Edward Hughes (1831-1900) in 1855 made a more practical, and popular, printing
telegraph, but the direct ancestor of the modern teletype (and incidentally the electric
typewriter) was invented in 1874 by Jean Maurice-Emile Baudot (1845-1903) of France.
His basic concept, time-division multiplexing, in which a fixed time slot is assigned to each
of any number of virtual channels is taken for granted in data communications today. In
his honor, the number of signal transitions per second on a communications line is given in
Baud. The “Great Soviet Encylopedia”, translation of the third edition, MacMillan, Inc.,

6 CHAPTER 1. INTRODUCTORY MATERIAL

1975, credits P.L. Shilling with the first practical telegraph in 1832, and M. H. Jacobi with
the first letter printing telegraph in 1850.

Telephone and Radio

Transmission of voices over wires actually started from attempts to do frequency division
multiplexing of telegraph signals, where one wire would be shared by assigning each tele-
graph signal to a particular pitch. The idea was suggested by E. Laborde in 1860 and
was developed by many people. As a consequence of working on the “harmonic telegraph”
problem Alexander Graham Bell (1847-1922) invented the telephone in 1875. He patented
his invention in 1876. He also did work on hearing. In his honor, the logarithmic unit of
acoustic power is called the Bel, and the tenth of a Bel or decibel is in common use in
both acoustic and electrical signal level specification. Heinrich Rudolf Hertz (1857-1894)
from 1885 to 1889 worked out the principles of radio transmission. In his honor the unit of
frequency is called the Hertz. Guglielmo Marconi (1874-1937) from 1896 to 1897 made the
first practical radio transmission system, and in 1900 made frequency division multiplex-
ing a reality. It is frequency division multiplexing which allows there to be multiple radio
stations broadcasting in the same area. Lee De Forest (1873-1961) invented the vacuum
tube triode in 1907, making possible the faithful amplification of electrical signals of sig-
nificant frequencies. By 1910 he was able to make the first radio broadcast of a voice and
established the first broadcasting station in 1916. The vacuum tube also became essential
in long-line telephone and telegraph circuitry.

By the 1930’s large networks of telephones, telegraphs, and radios were in existence. It
is interesting to note that teletype tear-tape shops functioned as semi-automatic message
switching systems long before the advent of electronic computers.

For more history, see the Encyclopaedia Brittanica articles on the Telegraph and on
the Telephone and Telecommunications. Also see chapter 2 in Loomis, “Data Communi-
cations”, and the “Great Soviet Encylopedia” article on Telegraph Communication.

1.3 Layering

The amount of detail involved in modern data communications is too great for most people
to handle. To avoid getting totally lost, the same general ideas used in structured program-
ming are applied to data communications. We try to identify related subproblems to treat
with common tools. We try to keep a limited and stable context for each subproblem. This
leads us to look at each subproblem in terms of further subproblems. We strive towards a
top-down approach – working from the problem specification towards the proper solution.

Unfortunately, reality often forces us to work bottom-up and middle-out to avoid solu-
tions which cannot possibly be implemented. We then try to describe the muddled result
in terms of a clean top-down model. At least it helps us to clarify the description and see
design flaws for the next attempt.

1.3. LAYERING 7

In current data communications jargon, problems are broken into layers. On each layer,
peer processes deal with each other using facilities provided by lower layers. From the point
of view of such processes, they are connected by virtual communications links, and they
serve to provide links for processes in higher layers.

In programming terms, each higher layer is a higher level construct.
In communications, the bottom layer is concerned with the physical media of data

transmission. The top layer is concerned with moving real world data – an abstraction
depending on the application at hand. Modern authors present the ISO model, which
inserts 5 layers between the application layer and the physical layer. There is no special
reason to favor 7 layers, except that this number is the current standard. The objective
is to partition the problem into manageable chunks. If an application should fit naturally
into 50 layers or 2 layers, so be it.

The ISO model has the following layers:
The Application Layer

The Presentation Layer

The Session Layer

The Transport Layer

The Network Layer

The Data Link Layer

The Physical Layer

This is reasonable for a computer to computer communications network with interme-
diate message switching nodes. For simple remote batch terminal systems, the middle 5
layers may compress to one or two.

Application Layer

The application layer actually consists of two interacting constructs. One is the abstract
communication we wish to implement, e.g. an airline reservation system, and the other is
the outer layer of software and hardware making that abstraction a concrete reality, e.g.
reservation command processing tasks, keyboard and screen layouts, etc. It is in this layer
that we move from abstract data to concrete data representations and back.

8 CHAPTER 1. INTRODUCTORY MATERIAL

Presentation Layer

The presentation layer, the next layer down, provides the services necessary to allow the
application layer to use a communications system efficiently. For example, it could provide
character set and code conversions, encryption for security, text compression for efficiency,
special device interfacing, and high level data base management. It is important to realize
that providing encryption and data base management in lower layers instead is an invitation
to security problems.

Session Layer

The session layer, when it exists at all, provides the services needed to establish and
maintain continuous connections, to correct any disconnects and message reorderings of
the lower layers. It might subdivide long messages to facilitate crash recovery. It is the
highest layer that needs to be part of the operating system, because it has to allocate
shared resources. That is, at the session layer and below, other users have to be protected
from the user of the application.

Transport Layer

The transport layer takes messages from the session layer (or the presentation layer, if no
session layer exists) and gets them to their destination. It may provide a continuous error-
free connection for messages, delivering them in the order received, or a message-at-a-time
connection which does not preserve order. It may have to break up large messages into
smaller packets to satisfy buffer limitations of lower layers, or assemble several messages
into one packet to improve efficiency. It is this layer that disguises the actual number of
physical channels, making them appear to be the desired number of virtual channels. This
layer is usually implemented as a privileged operating system task called a station.

Network Layer

The network layer takes packets from the transport layer and routes them, one hop at a
time, reliably to their destination, in the order sent. This is usually done by a low level
operating system task classified with the peripheral device drivers. It is often much more
complex code than is normally found in, say, a tape or disk driver. This is the highest
layer which is aware of intermediate nodes in the path of the data.

Data Link Layer

The data link layer accepts packets from the network layer and gets them to the next
node error-free. This usually requires the use of error detecting codes and an ACK/NAK
(acknowledge, retransmit on error) protocol. On sufficiently clean lines, or when timing

1.3. LAYERING 9

constraints require, error correcting codes may be used to reduce the retransmission re-
quirement. This layer is usually implemented in a mixture of low level driver software and
communications interface hardware.

Physical Layer

The physical layer accepts arbitrary bits and converts them to voltages, light pulses, radio
waves, etc., for actual transmisssion. Any medium capable of controlled, observable state
changes may be used as a communications medium. This layer usually has to deal with a
high error rate.

Peer Processes

Each of these layers depends on processes distributed among the nodes of the communi-
cations system. A process in a given node must cooperate with the peer processes of the
same layer, usually in other nodes. In some cases, it is appropriate for one process to be
master and the others to be slaves, but in most cases the processes in a given layer are
truly independent peers.

real world data <==> Application Layer <==> messages ...
|

Presentation Layer <==> converted messages
|

Session Layer <==> messages, error-free, unblocked,
| process connected
|

Transport Layer <==> messages, error-free, end-to-end,
| process connected
|

Network Layer <==> packets, error-free, routed
|

Data Link Layer <==> frames, error-free, 1 hop
|

Physical Layer <==> bits, with errors

On each layer, we show what it appears to be sending for the layer above.
Each layer above the physical layer has to deal with two kinds of messages, data mes-

sages and control messages, and must somehow coordinate them. Often the next layer
down will be given most of the control messages of the higher layers as data. Addressing

10 CHAPTER 1. INTRODUCTORY MATERIAL

information may be implicit, due to long term establishment of a connection, or explicit
for dynamic routing.

For example, consider a reservation request message in an airline reservation system.
On the level of the application layer, it is implicitly directed to the reservation transaction
processor. The presentation layer might convert the codes involved and treat the message
as a queued request for a data base management system, explicitly routing it to the proper
subfile. The session layer, having long ago established the connection has little to do other
than check that the connection is not broken. For safety, it might buffer a copy of the
message and addressing information for retransmission after a crash.

The transport layer might take the message and address, transform the address into a
destination host address and data representing a process address, and group the process
addressed message with other messages for the same host into a packet. The network layer
would then take the destination host address and find a route to that host. It would pass
the message and destination to an implicitly addressed next node. The data link layer,
again in this case addressing implicitly, might take the packet, subdivide it if necessary
into subpackets, add redundant information for error checking, and pass it on. If the
recipient acknowledges each subpacket as being consistent with the redundant information,
the subpacket can be considered sent. If a negative reply or no reply is received, the message
must be sent again.

1.4 Remedial Probability Theory

Suppose we toss a coin n times. Each toss is an independent event, i.e. the outcomes of
later tosses do not depend on the outcome of any one such toss. In the long run, we expect
half the tosses to have an outcome of heads and half the tosses to have an outcome of
tails. That is, given a sufficiently large number, n, of trial tosses, we expect the ratio, h/n,
of (favorable) heads outcomes to trials to be close to 1/2, and as n increases to have this
ratio tend to come closer to 1/2. As a generalization, we say that the probability, P(Ai),
of some outcome Ai in a finite set U = A1, ..., Am of all possible disjoint outcomes, is the
limit of the ratio of the number of favorable outcomes, i.e. Ai outcomes, to the number of
trials, as the number of trials goes to infinity.

If we consider either outcome Ai or Aj both to be favorable, then P(Ai or Aj) =
P(Ai)+P(Aj), and the probability, P(S), of any subset S of U is the sum of the probabilities
of the outcomes in S, which sum is a number between 0 and 1. Further P(not S) = 1-P(S).

Given two sets of outcomes, S and T, write the union of S and T, consisting of outcomes
in either S or T, as S+T, and the intersection of S and T, consisting of outcomes in both S
and T, as S*T. Clearly, by counting and discarding duplicates, the probability P(S+T) =
P(S)+P(T)-P(S*T). Now, if S and T are (stochastically) independent of each other, that
is outcomes in S occur regardless of whether or not outcomes in T occur, and vice-versa,
then P(S*T)=P(S)*P(T). The probability, P(S—T), of S given T, is P(S*T)/P(T), which

1.4. REMEDIAL PROBABILITY THEORY 11

says that P(S—T) = P(S), if S and T are independent.
If a numeric value v(Ai) is associated with each possible outcome Ai, then the expected

value of v on S, E(v—S), for a set of outcomes, S, is the weighted sum of v(Ai)*P(Ai—S)
over all Ai in S.

For more detail and rigor, see Loève, M., “Probability Theory”, D. van Nostrand Com-
pany, Inc., Toronto, New York, London, 1963, 685 pp.

As an example, consider the following question due to Tanenbaum, which effectively
asks:

Given n independent sources of events, each of which has a probability, p, of generating
an event in a given time interval, what is the probability that at least two events will occur
in the time interval.

First consider the probability, f(n), that at least one event from the n sources will occur
in the time interval. Clearly,

f(n) = P(an event from source 1 occurs) +
P((no event from source 1 occurs) and

(at least one event from n-1 sources occurs)
= p + (1-p)*f(n-1).

Thus 1-f(n) = (1-p) - (1-p)f(n-1) = (1-p)*(1-f(n-1)). Since 1-f(1) = 1-p, it follows by
induction that 1-f(n)=(1-p)**n, and f(n) = 1-(1-p)**n. Alternatively, we could have seen
this by noticing that 1-f(n) is the probability that no event occurs in the time interval, i.e.
that source 1 fails to generate an event, and source 2 fails to generate an event, and source
3 fails, etc., which gives directly, (1-p)**n.

Now consider the original problem. We require g(n), the probability that at least two
events from two different sources occur in the time interval. Clearly,

g(n) = P((an event from source 1 occurs) and
(at least one event from n-1 sources occurs))

+ P((no event from source 1 occurs) and
(at least two events from n-1 sources occurs))

= p*f(n-1)+(1-p)*g(n-1).

So

1-g(n) = 1 - p*(1-(1-p)**(n-1)) + (1-p)*(1-g(n-1)-1)
= (1-p) + p(1-p)**(n-1) + (1-p)*(1-g(n-1)) - (1-p)

12 CHAPTER 1. INTRODUCTORY MATERIAL

= p*(1-p)**(n-1) + (1-p)*(1-g(n-1)).

Now define

u(n) = (1-g(n))/(1-p)**(n-1)

Then u(n) = p + u(n-1), so u(n) = n*p+c, for some c which does not depend on n.
We have only to find c. Since g(1)=0, we have u(1) = 1, and c = 1-p, so

1-g(n) = n*p*(1-p)**(n-1) + (1-p)**n,

which you might recognize as the probability of precisely one event added to the prob-
ability of no events. Thus

g(n) = 1 - n*p*(1-p)**(n-1) - (1-p)**n.

It is often necessary to compute the expected number of attempts needed to have a
desired event. There are two ways to look at this. Let us start with the more complex view.
Suppose the probability of the desired event per trial is p. Then the expected number, S,
of trials is the sum,

’

infinity
__
\ (k-1)

S = /_ k*p*(1-p)
k=0

since in order to have the desired event on precisely the kth trial, we must have a failure
on the previous k-1 trials. However, S is just -p times the derivative with respect to p of
the infinite geometric series with ratio 1-p, so

S = -p * d(1/p)/dp = -p * -1/p**2 = 1/p

1.4. REMEDIAL PROBABILITY THEORY 13

The more direct way to see this is to realize that p is the ratio of the number of desired
events to trials, so 1/p is the ratio of trials to desired events, i.e. the expected number of
trials per event.

It is good to remember the series summation approach, not so much for this simple
case, but as a model for more general expected value calculations for repeated trials. Not
all such calculations yield to solution by inspection, but usually can be written as series
which, due to the linear multiplier, k, will tend to have fragments of derivatives of geometric
series.

Consider as an example of an expected value calculation, which can almost be done by
inspection, the “Taxi driver” problem in Tanenbaum. This problem involves the calculation
of the expected number of trials per transmission, given that two signal sources each
broadcast with probability p until a collision, and then with probability q until the collision
is resolved. Until a collision, the probability of a good transmission is just 2*p*(1-p), i.e.
the probability that A transmits and B does not plus the probability that B transmits and
A does not. The probability of a collision is p**2. The probability of a good transmission
while trying to resolve the collision is 2*q*(1-q). Thus the expected number of trials until a
collision is 1/p**2, while the expected number of trials resolving a collision is 1/(2*q*(1-q)).
The expected number of transmission in the 1/p**2 trials is

(1/p**2)*2*p*(1-p) = 2*(1-p)/p.

The expected number of transmissions in the 1/(2*q*(1-q)) trials is 1. Thus the ex-
pected number, T, of trials per transmission is

(1/p**2 + 1/(2*q*(1-q)))
T = _____________________________ = 1/(p*(2-p)) + p/(2*q*(1-q)*(2-p))

2*(1-p)/p + 1

In the particular case in Tanenbaum, p=.3 and q=.2, so T = 2.51.
A more common approach to the same sort of problem is to use Markov chains, and

look for the relative probabilities of being in the various states, e[i], by computing the
probabilities of transitions among all the states and solving for equilibrium. Then the
relative probabilities are used as weights in computing expected values. We have done
essentially the same thing by computing expected time in each state. We could derive
the probability of each state by dividing expected time by total time. The advantage of
this calculation is that, when it is applicable, it avoids the necessity of solving the linear
equations of equilibrium.

14 CHAPTER 1. INTRODUCTORY MATERIAL

As a final note, when in doubt, or even when certain (I did the “Taxi driver” problem
incorrectly twice with great certainty), a simulation can be helpful. In BASIC for the IBM
PC, the “Taxi driver” problem can be simulated by:

10 REM simulate 2 digitally speaking taxi drivers,
20 REM each with a probability of speaking of .3 until
30 REM a collision, then .2 until the collision is resolved
40 REM
70 CURPROB=.3:CURSLOT=1
80 NUMMES=0
100 CLS
110 TALK1=RND ’ random number in (0,1)
120 TALK2=RND ’ random number in (0,1)
130 IF TALK1<=CURPROB AND TALK2<=CURPROB THEN CURPROB=.2:GOTO 150
140 IF (TALK1<=CURPROB AND TALK2>CURPROB) OR (TALK1>CURPROB AND
TALK2<=CURPROB) THEN NUMMES=NUMMES+1:CURPROB=.3
150 REM here to advance to next slot and report running average
170 WRITE ‘‘slot,curprob,nummes,ratio:’’
180 WRITE CURSLOT,CURPROB,NUMMES,CURSLOT/NUMMES
190 CURSLOT=CURSLOT+1
200 GOTO 110

Naturally, for a proper simulation, this should be fleshed out with a variance calculation
to decide when to stop, and should not bother reporting all intermediate values. However,
even run as is for a few minutes, it brackets the likely answer to the range 2.48 to 2.55.

When to Stop a Simulation

Consider some sort of a computer simulation which produces a sequence of estimates x[i] of
a parameter u, where we assume that the x[i] are randomly distributed according to some
unknown distribution around u as the mean of the distribution.

The question we wish to answer is: How many samples from the sequence x[1], x[2], ...,
x[i] should we take in order to make the estimator of the kth mean

k
__
\

<x[k]> = (1/k) /_ x[i]
i=1

1.4. REMEDIAL PROBABILITY THEORY 15

“close enough” to u?
The answer is given by Tchebysheff’s inequality and the Law of Large Numbers. Sup-

pose we know that the mean and variance of the original distribution are u and s**2. Then
Tchebyscheff’s inequality is

s**2
P (|<x[k]> - u| > z) < ---------

k*z**2

That is, if we want to have the probability of the estimator of the mean being further
from the true mean than omega less than beta, we should take k such that

s**2
-------- <= beta
k * omega**2

s**2
k >= --------------

beta * omega**2

The only strong assumptions used here are that the samples are independently drawn,
and that the distribution has a known variance s**2. Unfortunately, we rarely will know
the value of s**2. We usually can only estimate it. Ideally, if we knew u we might use

__
\
/_ (x[i] - u)**2

k

as an estimator of s**2, but we are then stuck needing to know u. Instead, we use the
following (unbiased) estimator

16 CHAPTER 1. INTRODUCTORY MATERIAL

k
__
\
/_(x[i] - <x[k]>)**2
i=1

<s**2> = -------------------
k - 1

k
__
\
/_(x[i]**2 -2*x[i]*<x[k]>+<x[k]>** 2)
i=1

= --------------------------------------
k - 1

k
__
\
/_x[i]**2 - 2*k*<x[k]>**2 + k*<x[k]>**2
i=1

= ---------------------------------------
k - 1

k
__
\
/_x[i]**2 - k*<x[k]>**2
i=1

= ----------------------
k - 1

1.5. REMEDIAL LINEAR ALGEBRA 17

Note that the more conventional estimator, with 1/k instead of 1/(k-1) would give a
slight underestimate of s**2, which can cause problems with small k.

An interesting special case occurs when the quantity we wish to estimate is itself a
probability and all the samples are zeros and ones. The actual distribution is a bimodal
distribtuion with two delta functions, one at 0, one at 1 with relative weights giving the
probability desired. Since the samples are always 0 or 1, x[i]**2 = x[i] in all cases. Then
the estimator for the variance is just

k
__
\
/_x[i] - k*<x[k]>**2
i=1

= ----------------------
k - 1

<x[k]> - <x[k]>**2
= k* ----------------

k - 1

1.5 Remedial Linear Algebra

In physics a quantity with both direction and magnitude is called a vector.

/|

/ |
/
/

/
/
/

18 CHAPTER 1. INTRODUCTORY MATERIAL

In following a treasure map we might be told to go 5 paces north and 5 paces east
to get to a place about 7 paces north-east of our current position. This decomposition of
magnitude and direction into distance along n orthogonal axes yields the representation of
vectors as “n-tuples”, lists of n numbers.

We might represent a vector, x, as a “row-vector”:

x = (x[1], x[2], x[3], ..., x[n]),

or as a “column-vector”:

| x[1] |
| x[2] |

x = | x[3] |
| . |
| . |
| . |
| x[n] |

The number n is called the dimension of the vector.
We may add two vectors element by element:

x + y =

(x[1], x[2], x[3], ..., x[n])
+ (y[1], y[2], y[3], ..., y[n])

= (x[1]+y[1], x[2]+y[2], x[3]+y[3], ..., x[n]+y[n])

We may apply a scalar, a, to a vector, x, by multiplying each of the elements of x by a:

a*x = a*(x[1], x[2], x[3], ..., x[n])
= (a*x[1], a*x[2], a*x[3], ..., a*x[n])

1.5. REMEDIAL LINEAR ALGEBRA 19

Notice that x + -1*x = (0,0,0,...,0), the 0 vector, which acts much as the number zero,
i.e. x + 0 = 0 + x = x. Thus it is natural to call -1*x, -x.

We call a set of vectors, x1, x2, ..., xk, “linearly dependent”, if there is a set of scalars,
a1, a2, ..., ak, not all of which are zero, such that

a1*x1 + a2*x2 + ... + ak*xk is 0,

i.e. a non-trivial linear combination of the vectors is zero. We call a set of vectors
linearly independent if they are not linearly dependent. Clearly, for vectors of dimension
n, no more than n non-trivial vectors can form a linearly independent set.

A matrix, A, is a rectangular array of numbers:

| A[1,1], A[1,2], A[1,3], ..., A[1,n] |
| A[2,1], A[2,2], A[2,3], ..., A[2,n] |
| A[3,1], A[3,2], A[3,3], ..., A[3,n] |

A = | |
| |
| |
| A[m,1], A[m,2], A[m,3], ..., A[m,n] |

where n is the number of columns of the matrix and m is the number of rows.
A matrix of n columns may be applied to a column vector of dimension n from the left

as follows:

A[1,1], A[1,2], ..., A[1,n]		x[1]
A[2,1], A[2,2], ..., A[2,n]		x[2]
. . .	*	.

A*x = | . . . | | . |
| A[m,1], A[m,2], ..., A[m,n] | | x[n] |

| A[1,1]*x[1] + A[1,2]*x[2] + ... + A[1,n]*x[n] |
| A[2,1]*x[1] + A[2,2]*x[2] + ... + A[2,n]*x[n] |
| . |

= | . |
| A[m,1]*x[1] + A[m,2]*x[2] + ... + A[m,n]*x[n] |

20 CHAPTER 1. INTRODUCTORY MATERIAL

i.e. in order to find the i’th element of the resulting vector, we take the i’th row of A,
multiply it element by element by the elements of x, and sum to get the result. Notice that
the vector formed is of dimension m, not of dimension n.

If we were to use this multiplication between a row vector x and a column vector y, we
would get a one-dimensional vector, i.e. a scalar. For real numbers, this scalar is called
the dot product of the two vectors. (For complex numbers, the dot product is obtained by
first taking the complex conjugate of the second vector).

We can extend this multiplication to form a product between a matrix A of n columns
and a matrix B of n rows, by applying A to each of the columns of B in turn to form the
columns of the product. Writing these products as summations, we have:

(A*x)[i] = A[i,j]*x[j], i,j = 1, ..., n

xy = x[j]*y[j], i,j = 1, ..., n

(A*B)[i,j] = A[i,k]*B[k,j], k = 1, ..., n

The transpose of a matrix is obtained by exchanging the rows and columns of the
matrix. Taking the transpose of a product of matrices is the same as taking the product
of the transposes in reverse order, i.e.:

T T T
(A * B) = B * A

We have been deliberately vague about the “numbers” used. For later use in handling
messages as vectors of bits, we will need to have numbers given modulo 2, i.e. simply as
odd or even. In this case, multiplication becomes a logical “and” and addition becomes a
logical “exlusive or”:

* | 0 (even) | 1 (odd) + | 0 (even) | 1 (odd)
___|__________|_________ __|__________|________

| | | |
0 | 0 (even) | 0 (even) 0 | 0 (even) | 1 (odd)
___|__________|_________ __|__________|________

| | | |
1 | 0 (even) | 1 (odd) 1 | 1 (odd) | 0 (even)

| | | |

1.6. PHYSICAL MEDIA 21

Thus if we add the vectors (0, 0, 1, 1) and (0, 1, 0, 1), we get (0, 1, 1, 0).

1.6 Physical Media

In much of data communications, the hardware is taken as a given, since changing it is
usually much more expensive than adapting the software to fit the hardware available.
Even under such constraints, a clear understanding of the features and limitations of com-
munications hardware can be useful.

Almost any physical system capable of direct or indirect electrical control can be used
for data communications. The more popular ones are: electric wires, radio broadcast,
focused radio, focused light, light pipes and magnetic media. Each medium can be used for
direct signalling, amplitude modulated signalling, frequency modulated signalling, phase
modulated signalling, or some mixture of these.

Electrical Wires

Let us consider electric wires. The Voltage (electrical pressure), Amperage (electrical
current), or Wattage (electrical power) can be used as the parameter for signalling. In
direct signalling, each state to be sent would correspond to a distinct, steady value of
the parameter used, e.g. 3 Volts for a binary 1 and 0 Volts for a binary 0 (TTL), or 20
milliAmps for a binary 1 and 0 milliAmps for a binary 0 (current loop), or -3 to -25 Volts
for a binary 1 and +3 to +25 Volts for a binary 0 (RS232C), etc. In the other signalling
techniques, a carrier is required. A carrier is an alternating signal at some frequency. In
amplitude modulation, changes in the peak-to-peak level of the carrier represent the data.
In frequency modulation, changes in frequency from the carrier frequency represent the
data. In phase modulation, advancing or retarding the time at which the carrier alternates
represents the data.

Limitations

Electrical wires have several characteristics which limit the amount of information they
can carry. Capacitance between a wire and the signal return wire limits the rate at which
signals can change. Rapidly changing signals see a lower resistance across the capacitance
than more slowly changing signals, and thus are decreased in amplitude. Inductance, which
amounts to the wire acting like an electromagnet broadcasting to itself, acts like a series
resistance, also blocking higher frequencies. Induced noise from other wires and stray radio
frequency signals picked up by the wire acting as an antenna causes different signal levels
to be confused with one another.

These problems are handled in several ways. Wires can be kept short to minimize total
capacitance and inductance. Long runs can use special low inductance, low capacitance
cables. Stray signal pickup can be minimized by using twisted pairs, or in more sensitive

22 CHAPTER 1. INTRODUCTORY MATERIAL

cases, coaxial cables. More power can be used to drive the line to overcome the losses due
to capacitance and inductance, and to swamp out induced noise. For example, the high
currents of 20 milliAmpere and 60 milliAmpere current loops allow them to be used in
cable runs of thousands of feet, while the low currents of RS232C (about 4 milliAmperes
at similar Voltages) limit those interfaces to only 50 feet on ordinary wire, and only a few
hundred feet on the best wires.

Bandwidth

Despite all such efforts, we are left with the fact that electrical wires are limited in the
range of frequencies they can reliably transmit (bandwidth limitations) and are subject
to interference by various noise sources. Nyquist studied the simple effect of bandwidth
limitations, and Shannon extended that work to include the effect of noise.

In order to understand such effects, it is useful to move from the time domain, in which
we look at the state of a line relative to time, to the frequency domain, in which we look
at the state of a line relative to the frequency components of the signals on the line. The
standard decomposition of a signal into its components of various frequencies is due to
Fourier, and such studies are called Fourier analysis.

Nyquist’s Theorem

Any signal over finite time may be approximated by weighted sine and cosine signals at
frequencies which are multiples of the basic transition frequencies in the signal. Nyquist
noted that, if the highest such frequency that can appear in a signal is F, then any two
signals which agree at sampling points covering the signal time and spaced less than 1/(2F)
apart must agree at all points. Intuitively, one can see this by considering the difference
between the two signals. If they agree at such closely spaced points, but disagree at
some intermediate point, then that difference signal must have a frequency component of
frequency greater than F. Thus the maximum rate at which it is possible to provide distinct
samples on a line of bandwidth F is 2F.

-
- -

- -
_______________| |_______________________

| |

1.6. PHYSICAL MEDIA 23

Difference signal agreeing at points < 1/(2F) apart, not in middle. Has frequency
component > F.

Now we can compensate for this limitation by allowing each possible sample to cover
a large range of possible values. When we look at data representations we will see that
N possible values would correspond to log N (base 2) bits. Given k bits, and a channel
capable of 2F samples per second, we would need 2**k distinct levels to transmit k*2F bits
per second. In the absense of noise, this would allow us to squeeze more and more bits into
a line.

Shannon’s Theorem

Noise, however, stops us, by causing distinct levels to be confused with one another. For
example, if we know that we face noise of about 1/2 the signal level, and we try to use
three distinct levels on the line, we will often confuse one of the middle level signals with
the upper or lower one. Shannon showed that, if we face a truly random noise, N, imposed
on a signal of amplitude S, then we can safely create only

((S+N)/N))**.5

distinct levels without confusing them, i.e. that each signal level needs a guard band
of size (N/(S+N))**.5 of the total signal plus noise.

Thus the maximum data capacity of a line with bandwidth F and signal to noise ratio
R is F*log(1+R). For example, a video system with bandwidth of 6*10* 6, and signal to
noise ratio of 45dB = 3*10**4, is capable of handling no more than 90,000,000 bits per
second, which just matches the low end of our range for digital television given below.

Carriers and Modulation

The other media mentioned above have similar limitations or worse. Radio requires a
carrier, so direct signalling is not possible. Amplitude, frequency and phase modulation
can all be used. Light may seem to allow direct signalling, but can be viewed as using a
carrier consisting of light of the particular color involved, in which case direct signalling
is just a variant on amplitude modulation. Magnetic media, e.g. tapes, disks, bubbles,
can be used for direct signalling, but have very non-linear behavior when used that way,
requiring very careful design to avoid signal distortion.

In all these media, it is most convenient to think only of binary digital signals. In
reality, the recorded signals are not likely to be pure two level signals. Rather they will have
rounded corners, ringing edges, and drifting base levels. If one assumes that such problems
can be ignored, then the major signalling techniques can be viewed in terms of simple
pulses. Instead of using the term, modulation, it is common to use a telegrapher‘s term,

24 CHAPTER 1. INTRODUCTORY MATERIAL

keying, so, for example, frequency modulation becomes frequency shift keying (FSK) and
phase modulation becomes phase shift keying (PSK). Assume the data stream is 010011,
then the direct signal might be:

---------- --------------------

---------- --------------------

and in amplitude modulation:

-- -- -- -- -- -- -- --
| | | | | | | | | | | | | | | |

-- -- | | | | | | -- -- -- -- -- | | | | | | | | | |
| |
| |

-- --| | | | | |-- -- -- -- -- -- | | | | | | | | |
| | | | | | | | | | | | |
-- -- -- -- -- -- --

Notice that the use of a carrier has introduced a certain imprecision in the location of
the bit boundaries. This can be reduced by making the carrier frequency an exact multiple
of the bit rate.

Frequency modulation appears as:

-- -- --- --- -- -- -- -- -- --- --- --- ---

-- -- --- -- -- -- -- -- -- --- --- ---

while phase modulation appears as:

1.6. PHYSICAL MEDIA 25

----- ---------- ----- ----- -----

---------- ----- ---------- -----

The method of choice is usually some variation on phase modulation or direct signalling,
because they make very effective use of the bandwidth of the channel. Phase modulation
can be used with a carrier only twice the bit rate in frequency, while the other two modu-
lation techniques are difficult to use with so low a carrier frequency. Phase modulation has
an advantage over direct signalling when the sender and receiver do not have access to the
same time reference, because timing can be recovered reliably from the data. There are al-
ways signal level transitions in phase modulation, while direct signalling may have no such
transitions for particular data patterns. Phase modulation and frequency modulation have
a distinct advantage over amplitude modulation in coping with noise. Most noise distorts
levels rather than the time of crossing of a signal, so it is feasible to clip (throw away the
highest amplitude excursions of a signal), and filter (smooth out the fastest changes) and
reliably recover a phase modulated or frequency modulated signal, but these techniques
would discard most of the information in an amplitude modulated signal.

Modulating Light

Certain media, however, are best used with amplitude modulation. For example, frequency
and phase modulation of most light sources is rather difficult, and detection is even harder,
so light signalling usually starts with amplitude modulation, though phase and frequency
modulation may then be used on top of a carrier generated by amplitude modulation
of the light. This is not a serious problem, because electromagnetic noise pulses have
no effect on light signals, unless themselves in the light frequency range, and somehow
in the transmission medium. This immunity to electromangnetic interference is making
light an increasingly popular transmission medium. The first uses were simply focused
infrared light transmitters and receivers working through air paths. These were vulnerable
to obstruction. Light pipes made from drawn glass fibers allow light to be used almost as
freely as electrical wiring.

Modems

For any of the media not directly compatible with the computer or terminal hardware
involved, some sort of interface hardware may be needed to convert internal signals to
external and external signals to internal. When a carrier is involved, the interface is
usually called a modem, for modulator-demodulator. For dial-up telephone lines, the most

26 CHAPTER 1. INTRODUCTORY MATERIAL

common modems are “Bell 103” compatible, which are full duplex, 110-300 baud interfaces
for asynchronous data. In the United States it is practical to use the dial-up network with
asynchronous 1200 baud full duplex modems, and synchronous 4800 baud half duplex
modems. Other areas of the world may not reliably handle the same data rates.

Direct Signalling, RS232C and Current Loops

The two most common direct signalling techniques for low to medium speed data commu-
nications are EIA RS232C, a Voltage interface, and the 20-60 milliAmpere current loop
derived from telegraphy. A new standard, EIA RS422, is intended to replace RS232C,
and effectively reverts to a 20 milliAmpere current loop. However, RS232C is still used on
almost all major communications systems, and must be clearly understood.

A transmitter for RS232C may use any Voltage between -5 and -15 Volts for a binary
1, and any Voltage between +5 and +15 Volts for a binary 0, when faced with loads from
3000 Ohms to 7000 Ohms. (For some signals used for modem control, the meaning of 0 and
1 are ON and OFF respectively). The transmitted signal may change at a rate no faster
than 30 Volts per microsecond. Each RS232C signal lead must be able to withstand a
short circuit to any other signal lead or to ground. Output current is limited to .5 Ampere
(usually to 10 milliAmps) in all cases.

A receiver for RS232C must accept any Voltage between -3 and -25 Volts as a binary
1, and any Voltage between +3 and +25 Volts as a binary 0. For some modem control
leads it is necessary that an open circuit (300 or more Ohms to ground) also be treated as
a binary 1, and a grounded lead is usually treated the same way.

The international version of RS232C is CCITT V.28. The use of the common features
of both the U.S. and CCITT standards limits systems to no more than 20000 bits per
second and cables of no more than 50 feet. In practice, lower bit rates and low capacitance
cables allow use for greater distances. Very long runs at rates of 2400 Baud and below seem
to work in many cases. A newer standard, RS423, similar but not identical to RS232C
recognizes the tradeoff between speed and distance.

Connection from a terminal to a modem is organized in a 25 pin miniature D-shaped
connector.

1.6. PHYSICAL MEDIA 27

Pin Purpose

1 protective ground
2 transmitted data from terminal to modem
3 received data from modem to terminal
4 request to send, ON when terminal has data to send
5 clear to send, ON when modem can accept data from terminal
6 data set ready, ON when modem is ready to use the line
7 signal ground, reference for all signals
8 data carrier detect, ON when modem has signal from remote

modem
9 positive test Voltage from modem
10 negative test Voltage from modem
11 unassigned
12 secondary data carrier detect, ON when modem has secondary

channel from remote modem

Pin Purpose

13 secondary clear to send, ON when modem can accept data
from terminal for secondary data channel

14 secondary transmitted data from terminal to modem
15 transmitter clock from modem to terminal
16 secondary received data from modem to terminal
17 receiver clock from modem to terminal
18 receiver dibit clock from terminal to modem
19 secondary request to send from terminal to modem
20 data terminal ready, ON when terminal is ready to use

the line
21 signal quality detect from modem to terminal
22 ring indicator from modem to terminal, ON when incoming

call rings the line
23 data rate select, ON when terminal selects an alternate

rate
24 external transmitter clock from terminal to modem
25 busy, ON when terminal is busy

28 CHAPTER 1. INTRODUCTORY MATERIAL

In practice, for direct connection of terminals to local equipment, usually only leads 1,
2, 3, and 7 are used. For minimal modem control, leads 1, 2, 3, 4, 5, 6, 7, 8, and 20 usually
suffice. As with many standards, considerable variations exist.

There are various interface integrated circuits used to easily create RS232C circuits. For
example, the Motorola part numbers are MC1488 for a chip with 4 drivers and MC1489 for
a chip with 4 receivers. The MC3488A and B dual drivers meet the newer RS423 standards
for use on longer lines at higher bit rates. The MC3486 receiver should only be used with
RS423 drivers. There are similar parts from most major integrated circuit manufacturers.

(Caution must be used in matching older circuit drivers with newer receivers. With an
eye to the future, some computer and terminalmanufacturers are using receivers intended
only for the newer RS423 standard. When presented with RS232C signals of low enough
Voltage, these receivers work properly. When presented with higher Voltages, they fail. A
series dropping resistor usually cures the problem.)

Current Loops

Current loop interfacing is basically simple, but totally nonstandard. Industry practice
seems to be to totally ignore the EIA standard pinouts for even RS422 based current loops,
so we will stay with generalities. In a current loop, the transmitter functions like a switch,
and the receiver functions like a relay, since those were the original models of a current
loop. Somewhere between the transmitter and the receiver is a current source, originally
a battery. One logic state, MARK, is defined when current flows, and usually corresponds
to a logic 1. The other logic state, SPACE, is defined when no current (or sufficiently little
current) flows, and usually corresponds to a logic 0. When the current source is in the
transmitter, the transmitter is called active and the receiver is called passive. When the
current source is in the receiver, the receiver is called active and the transmitter is called
passive. The current source is usually a Voltage source in the range of 10 to 100 Volts,
with a current limiting resistor in series.

When the current is limited to 20 milliAmperes, as with a 20 Volt source and a 1000
Ohm circuit resistance, we have a 20 milliAmpere current loop, the most common current
loop for computer equipment. For long remote lines, a 60 milliAmpere current loop is more
common. Local connections for computers are usually simple 4 wire, full duplex current
loops, one loop for computer to terminal printer and the other from terminal keyboard to
computer. When the terminal has a paper tape reader, there may be a third loop to send
a pulse to make the reader read one character.

For very long runs, a bipolar current loop may be used, in which binary 0 is represented
by current in one direction, and binary 1 by current in the opposite direction. As we shall
see, this idea has been revived in the RS422 standard.

A particularly nice aspect of the four-wire current loop, is that the passive end need
have no direct electrical connection to the active end. This seemingly impossible state of
affairs is made possible byopto-isolators. These devices combine a light-emitting diode with

1.6. PHYSICAL MEDIA 29

a phototransistor. When current passes through the diode, it emits light which causes the
phototransistor to conduct, passing on the switching effect of the current loop, but allowing
very large Voltage differentials between the two sides.

Long current loop runs may use three-wire full duplex circuitry, in which the ground
return is shared by both printer and keyboard circuitry, two-wire half-duplex circuitry,
in which the keyboard switch closure is in series with the printer loop, or several special
variations in which the earth itself may be used as a return circuit. This last is not good
at high bit rates. At low bit rates it is practical to establish full duplex service on a two
wire connection in a manner similar to that used for two wire full duplex service on local
telephone loops. The basic idea is that the local keyboard’s signals are cancelled for the
local printer by a bridge circuit or specially connected transformer.

The series connection of current loop equipment works because the resting state of the
loop between characters is to have current flowing. This makes it particularly easy to have
many current loop devices share a line.

Current loops gave way to RS232C for many reasons. First, the original current loops
used simple electromechanical relays and switches and were thus very limited in bit rate.
Second, early modems required many special control circuits and clocks, which would
have required just as many high current circuits. Since the intent of the standard was
only to provide a means of local connection between computers or terminals and modems,
changing to a low current Voltage interface which could handle many leads with minimal
power requirements made good sense.

At present however, the dominant need is for simple connections involving only transmit
and receive data, but at ever higher bit rates. Functions which used to be handled by special
leads can now be very well handled by special control messages on the data leads to smart
modems. Even when control leads are required, newer circuitry for power supplies and
interface chips makes handling multiple current loops practical. The new standard, EIA
RS422, provides for drivers capable of putting 20 milliAmperes into a 100 Ohm load in
a balanced, bipolar configuration. The receivers detect only the direction of current flow,
not absolute voltages relative to ground. The technique used is to have two high current
Voltage drivers for each signal. When the signal is a 1, one of the two drivers goes to at
least 2.5 Volts, while the other goes to no more than .5 Volts. When the signal is a 0, the
drivers exchange roles. The receiver has a 100 Ohm load resistor and detects the difference
in Voltage between the two ends of the resistor.

30 CHAPTER 1. INTRODUCTORY MATERIAL

|\ |\
| \----------------------------| \
| \ | | \
| \ / | \
| \ \ | \
| \ / | \

------| / \ | /-----------------
| / / | /
| / \ | /
| /o---------------------|----| /
| / | /
|/ |/

Such circuits have been used for signals of up to 10**6 bits per second at distances of
close to a mile. They are very noise immune.

Wires and Cables

Selecting the proper electrical wires for data communications signalling is a nontrivial task.
Electrical wires are usually provided in insulated and possibly shielded cables in various
configurations. For communications work, the most popular are:

Twisted pairs

Coaxial cables

Ribbon cables

Impedance Matching

When used with high bit rate signals, each of these requires a match between the charac-
teristic impedance of the cable and the load impedance to avoid signal reflections on long
runs. The manufacturer‘s specifications should be consulted for exact impedances, but in
general they run between 50 and 120 Ohms, making it difficult to find good cable matches
for low current, high impedance systems.

1.6. PHYSICAL MEDIA 31

Twisted Pairs

_ _ _ _ _ _
/ \ / \ / \ / \ / \ / \

/ \ / \ / \ / \ / \ / \
/ / / / /

\ / \ / \ / \ / \ / \ /
_/ _/ _/ _/ _/ _/

Twisted pairs consist of signal and return wires, or signal and ground wires intertwined
so that it is more difficult for induced noise to generate a differential between them. Each
pair may or may not be shielded. A cable of many pairs may have an overall shield. Unless
specially made, twisted pairs tend to have fairly high signal losses and require high current
drivers for long runs. They have the advantage of being inexpensive. They are used for
telephone local loops, long line current loop runs, and short RS232C terminal cables.

Coaxial Cable

/ \ \

/ \ \
| __ | |
| | |
\ / /
__/_______________________________________/

A coaxial cable consists of a central signal-carrying conductor surrounded by a cylin-
drical shield of braid or foil. The spacing between the center conductor and the shield
is kept constant by an insulating tube of some dielectric. Properly made coaxial cables
have very low losses and are very insensitive to induced noise. They can be used to make
links of very high bandwidth, but cost 10 times and more the price of twisted pairs. When
maximum noise immunity is required, an extra shield layer is added, making triaxial cable.
Coaxial cables are available with several standard impedances.

There is nominal 50 Ohm cable (actually 40-60 Ohms), nominal 75 Ohm cable, and
nominal 93 Ohm cable. For each impedance, there are choices of distributed capacitance
and loss. For example, Belden 9/U has an actual impedance of 51 Ohms, a capacitance
of 98.4 picoFarads per meter, and losses of 21.3 deciBels per 100 meters at 900 megaHertz
and 6.2 deciBels per meter at 100 megaHertz, while Belden 62/U has an actual impedance
of 93 Ohms, a capacitance of 44.3 picoFarads per meter, and losses of 36.1 deciBels per
meter at 900 megaHertz and 10.2 deciBels per 100 meters at 100 megaHertz.

32 CHAPTER 1. INTRODUCTORY MATERIAL

A ribbon cable consists of individual wires, possibly twisted pairs or coaxial cables,
bonded side by side to form a flat ribbon. A shielding ground plane may be bonded to
one side for some noise immunity, or a full shield may be wrapped around the cable. By
making the conductor spacing uniform across the cable, rapid and inexpensive connection
to “insulation displacement” connectors is possible, greatly reducing the cost of multi-wire
cables. Usually the conductors are on .05 inch centers and work with connectors having
two rows of pins on .1 inch centers. They are usually used for short runs of many parallel
signal lines, as in local computer-computer and computer-peripheral links.

The FCC has become more strict about electromagnetic interference generated by com-
puters, so fully shielded cables are becoming a necessity. In shielding a cable, it is important
that the shield be properly connected to a ground, and that that connection be made only
at one end of the shield, not both, to avoid ground loops.

Before leaving the subject of electric wires, it is worth noting that we have only given
a small sampling of the complexities of the subject. Great care must be taken if a cost
effective wiring system of the desired bit rate and noise immunity is to be obtained.

In broadcast radio, each station sends a signal which goes in all directions, but which
decays by an inverse square law. For low frequencies (below a few megaHertz), the Earth’s
atmosphere and conductive surface act much like a wave guide and allow very long distance,
non-line-of-sight transmissions. At higher frequencies the useful distance drops sharply
and line-of-sight restrictions start to apply. This disadvantage is overcome at microwave
frequencies by focusing the radio signal and using repeaters on high towers, or in satellites.

Light may be used in a similar manner over short runs but is vulnerable to passing
obstructions, like rain-storms. To avoid such limitations, light may be routed in light pipes
made of fibers in a surrounding medium which provides total internal reflection.

The choice of physical media in data communications depends on the balance among
required data rates, required error rates, feasible interfaces, signalling distances and costs.
Usually high data rates over long distances at low error rates are expensive.

Almost any medium capable of an observable controlled state change can be used. Var-
ious signalling techniques using electrical wires are currently most popular. Applications
of light fibers are increasing rapidly and show great promise for the future.

Chapter 2

Data Communications Line
Handling

In this section we will consider the fundamental building block of networks: the data
communications line, which is a device able to accept information at one point and deliver
that same information at some distant point. A line may be realized in many ways.
One might write letters and send them through the post. One might send pulses over a
wire. One might use radio waves, light, sound or any other medium which is subject to
controlled changes in state. A medium may allow more than one point of delivery for the
same information, as with radio broadcasts, or allow only a single point of delivery, as with
carrier pigeons. There are advantages and disadvantages in each approach.

Unfortunately, all media are subject to errors and have some limit on their capacity
to carry information. One must arrange to detect errors by adding redundant information
to the traffic, and one must devise protocols which correct such errors. Data must not be
presented faster than it can be handled. Economy dictates that provisions be made for
handling more than one data stream on a given line.

To address such problems, we will draw on the tools of information theory, coding
theory, elementary physics, and the study of cooperating parallel processes. We will see
that we can carry arbitrarily detailed information at any desired small, but non-zero,
probability of transmission error, assuming we can provide sufficient information capacity
in the line. We will examine codes of varying degrees of efficiency at detecting errors, with
particular emphasis on cyclic codes, and we will consider protocols which respond to the
errors detected without duplicating or dropping messages. When we are done, we will be
able to assume communications lines which are sufficiently reliable to allow us to piece
together communications networks.

33

34 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

2.1 Data Representation

Quantum Physics aside, we live in an effectively continuous world. Interactions with com-
puters require mapping continua of data into discrete and usually finite sets. For example,
the human voice is capable of many subtle and expressive sounds. In dealing with comput-
ers, we must perforce lump all the ways one might say, for example, “I love you,” into ten
(yes, ten) characters. When the intended recipient gets those words, he or she could map
them back into any of a wide range of sentiments. We might try to improve the faithfulness
of this data representation by using more characters per sentiment. We might say, “I love
you very much,” or “I love you like a sister,” or “How do I love thee/ Let me count the
ways/ ... “. But, no matter how many words we use, it is doubtful that we will achieve an
accurate representation of the original thought.

Since we cannot solve the problem, let us accept it and describe it. Claude E. Shannon
[”A Mathematical Theory of Communication”, Bell System Technical Journal, volume 27,
pp 379-423, 623-656 ,1948] provided the basic concepts of Information Theory and Coding
Theory. Much has been done since then. See, for example, Robert M. Fano [”Transmission
of information - A statistical theory of communications”, the M.I.T. Press, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 389 pp., 1961] and J. H. van Lint
[”Introduction to Coding Theory”, Springer-Verlag, New York, 171 pp., 1982, ISBN 0-387-
11284-7].

The basic model we will use in dealing the problem at hand consists of five elements:
Information Source

Outgoing Encoding Device

Signal Transmission Channel

Incoming Decoding Device

Information Destination

________ _________ _________ _________ _____________
Source	->	Encoder	->	Channel	->	Decoder	->	Destination
________		_________		_________		_________		_____________

The encoder translates the information from the source to a form suitable for trans-
mission over the channel. For example, the speech centers of our brains translate complex
feelings into sequences of sounds to be transmitted by the air. The decoder inverts this

2.1. DATA REPRESENTATION 35

translation for the destination. We say that the source information is represented on the
channel by the encoded source information and at the destination by the decoded chan-
nel information. In this chapter we are concerned with the considerations in representing
information.

Defining Information

What do we mean by information? A rose is a rose, not the letters r-o-s-e. For concrete
objects, the object itself is the true information. We associate words, i.e. labels, with
various objects, so that others can distinguish the objects we have in mind from other
objects. The presence of a rose is a particular state of some part of the universe. By
information we mean a set of labels associated with various states of some system. If we
apply one label to a wide range of states, we give up the ability to distinguish among those
states. Conversely, if we wish to preserve the detailed information about many states, we
need many distinct labels. If the states change with time, so must the labels. If we cannot
change our labels in synchrony with the changes in states, more information will be lost.

In the real world, states can change at arbitrary times, arbitrarily often. In comput-
ers and communications systems, we usually limit state changes to certain discrete times
(”clock ticks”) or place a lower bound on the time between states changes, or do both. In
either case, in any finite time interval we can expect only a finite number of distinct values
to be assumed by any labelling states, r(t), in R. In modern digital circuitry, only a finite
number of possible values may be assumed by all r in R for all time. Thus, in the clocked
case of synchronous digital circuitry, in any finite time interval we have a finite R. In the
unclocked case, and in analogue circuitry we might well have an infinite, even uncountable
R, but would have no way to distinguish among more than a finite number of classes of
states if any synchronous digital circuitry were interposed between the observer and the
unclocked or analogue circuitry. Thus it is reasonable to restrict our attention to finite
R. (The infinite case does occur in some systems, causing great difficulty in analysing and
removing problems).

Given a finite R, the mapping from S to R defines a finite number of equivalence classes
on S, by considering two states in S to be in the same class if they are mapped to the same
member of R. Two such states, s1 and s2 mapped to the same r, will be indistinguishable
after transmission. That we do or do not consider a particular representation sufficiently
faithful comes down to our willingness to accept the idea that s1 may be confused with s2.

36 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

/s1 \
| s2 | s7 __________________r2
| s3 _______________r1
| s4 / /s8 _________________r3
| s5 | \s9 /
\s6 / /s10\

| s11 |
| s12 ________________r4
| s13 /
| s14 |
\s15/

In the figure above, s1, s2, s3, s4, s5 and s6 form one equivalence class, s7 forms a
second, s8 and s9 a third, and s10, s11, s12, s13, s14 and s15 a fourth.

Binary Representation

Once we accept a particular representation of our data, we can translate that representation
into another representation going from S into streams of binary digits. One simple way
would be to number the r(t) in R from 1 through card(R), the cardinality of R, i.e. the
number of things in R. However, it is more efficient to use 0 through card(R)-1, instead, and
take the binary representation of the ordinal of any r(t) in place of that r(t), using leading
zeroes, say, to avoid confusion about where one number ends and the next begins. We would
need the logarithm to the base 2 of card(R) bits in the full time interval under consideration.
Since the only base we will use for logarithms will be 2, we will use log(card(R)) as our
notation. This, of course leaves us with fractional bits in most cases. For most purposes,
we must take a ceiling function to get the next whole number of bits not less than the log.
However, when combining statistical aggregates of counts of bits to estimate a required
capacity, it may be appropriate to retain the fractions as such.

Suppose we now divide the time interval on a clock tick. At worst then R is the product
set of the range of states R1 for interval T1 and the range of states R2 for interval T2.
We will need no more than log(card(R1))+log(card(R2)) bits to represent the data, and
this value is greater than or equal to log(card(R)). With states uniformly populated in
time, then, log(card(R))/T bits per unit time is a reasonable measure of the rate at which
information is to be represented.

For example, suppose the range, R, has two possible states in the interval T1 and two
possible states in the interval T2:

2.1. DATA REPRESENTATION 37

|<--------T1-------->|<--------T2-------->|
state1 state1 r1
state1 state2 r2
state2 state1 r3
state2 state2 r4

For each of the two states assumed in interval T1, we may assume at most two states
in interval T2, for a maximum possible range of states of four, the product of two and two.
Since the log of a product is the sum of the logs of the quantities being multiplied, and each
interval requires only one bit, the total range requires at most two. If we added another
interval allowing two states, we would again multiply the number of possible states by two
and add one to the number of bits required. As long as there is no reason to assume that
some time interval favors one state or the other, the number of bits required will go up
linearly in time.

Escape Codes

In some cases, however, we can reduce this rate because we know that some states are more
likely than others, e.g. e’s are more likely than q’s in English text. We could use short bit
streams for the most likely states and reserve a short bit stream to indicate that a long
bit stream follows for the less likely cases. This technique of escape sequences is used both
to reduce information rate demands, and to expand existing representations to carry more
information.

For example, suppose we have an English language text which must which must also
carry some words in a foreign alphabet. We could do a reasonable job for English in a little
over 100 characters, requiring seven bits per character. The other alphabet might require,
say, 63 additional characters. Thus the total alphabet for both languages would need 163
characters, or eight bits. If the use of those characters is limited to, say, one percent of
the text, we could add one special escape character, #, to our English alphabet to indicate
that the next character was not an English character, but a transliteration from the foreign
alphabet into English. The total text would grow in length by one percent for all the #’s,
but, because we could use seven bits per character rather than eight, would be 7.07/8 the
length of the more obvious representation.

As a general approach, order the states by decreasing probability, p[i], i = 1,..,card(R).
Suppose p[1],..,p[k1] are all greater than or equal to 1/2**l1, then since probabilities sum
to 1,

1 >= p[1]+..+p[k1] >= k1/2**l1

38 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

and we can represent the first k1 states by numbers of no more than l1 bits. Now
suppose p[k1+1],..,p[k2] are all greater than or equal to 1/2**l2 which is less than 1/2**l1,
then, since

1 >= p[1]+..+p[k1]+p[k1+1]+..+p[k2]
>= k1/2**l1 + (k2-k1)/2**l2

we have

k2-k1 <= 2**l2 * (1-k1/2**l1) = 2**(l2-l1)(2**l1-k1)

so that we can represent the next k2-k1 states by 2**l1-k1 sets of numbers of l2-l1 bits,
i.e. we can take each of the unused numbers of l1 bits from our representation of the first
k1 states and take that unused number as an escape code flagging a group of l2-l1 bits
to follow. Clearly (exercise left to the reader) we can continue this process, so that the
unused numbers in this set become escape codes for the next lower probabilities, giving us
an expected number of bits in the time interval of

(p[1]+..+p[k1])*l1+(p[k1+1]+..+p[k2])*(l1+l2-l1)+..

from which the general expression for the number of bits required

card(R)
__
\

H = /_ p[i] * log(1/p[i])
i=1

Entropy

The quantity H is called “entropy” because it is of the same form as the expression for
entropy used in statistical mechanics, where it is a measure of the disorder of a system.
In terms of information, the more disordered a system, the more distinct messages it can
convey, i.e., the more information, and the more bits required.

2.1. DATA REPRESENTATION 39

Let us examine the expression for entropy in more detail. Notice that all the terms
of the sum are nonnegative, as one might expect, and that the only way to achieve an
entropy of zero would be to have some state with probability one and all other states
with probability zero. In that case, there is only one state, and no bits need be sent to
distinguish among states.

In practice, while this extreme information theoretic limit would save bits, it is not
worth the coding complexity, and most representations are chosen by other criteria.

Criteria for Representations

One criterion, to which we will return later, is security. It is often important that the
representation not convey the meaning of the original data to an observer who has not
been given the details of the representation. Conceptually, this is part of the structure of
the representation, but historically it is handled deeper into the communications problem.

Another criterion, opposed to security, is to have the representation convey as much of
the meaning of the original data as possible. This helps both in debugging systems and in
detecting communication errors. It also helps in final applications. For example, we might
choose a code in which the letters of the alphabet are assigned numbers in alphabetic order
for each case and font. This then facilitates such operations as lexicographic sorting. For
most computing and communications applications the choice has been made in favor of
clarity rather than security, and one character set is – with minor variations – used in
most systems for text. That set is called the ISO character set. The U.S. national variant
is called ASCII (American Standard Code for Information Interchange). An excellent
reference, with bibliography, can be found in “A view of the history of the ISO character
code,” by R.W. Bemer in the (now defunct) Honeywell Computer Journal, vol 6, #4, 1972,
pp 274-286.

ISO Character Set

It is very important to have a clear understanding of the ISO character set, since it is taken
for granted in most data communications, and in those unfortunate systems that use other
sets, e.g. some EBCDIC or BCD based systems, functional equivalents to the ISO set can
be found.

The ISO set contains 128 characters, grouped into 8 columns of 16 characters each, all
numbered from 0. Columns 0 and 1 are used for various communications control characters
and data delimiters, such as carriage return (CR) and line feed (LF). Columns 3 through
7 are used, with one exception (DEL), for printable characters. The digits are in column
3, the upper case alphabet in columns 4 and 5, and the lower case alphabet in columns 6
and 7. Some characters are allowed to vary from country to country to allow for special
national symbols. For example, column 2, row 3, is # in the United States, but the symbol
for the pound in sterling areas.

40 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

col: 0 1 2 3 4 5 6 7
row
0 NUL DLE SP 0 @ P ‘ p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ’ 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y

10 LF SUB * : J Z j z
11 VT ESC + ; K [k {
12 FF FS , < L \ l |
13 CR GS - = M] m }
14 SO RS . > N ^ n ~
15 SI US / ? O _ o DEL

The binary code for any entry can be found by composing the bits of the column number
with the bits of the row number. For example, CR is in column 0, row 13, and thus has
the binary code 0001101 = 13 decimal = 15 octal = 0D hexadecimal. We will refer to the
entries by column/row.

The first two columns of control characters provide us with a practical example of
encoding data for efficiency. At the time this set was formed, these were the most common
communications functions, so each was assigned a single character instead of some string
of characters. The final control character, DEL, at the end of the set had to be left there
to conform to the practicalities of handling paper tape.

NUL (0/0) stands for null and is usually used as a time fill character with no other
effect.

SOH (0/1) stands for start of header, and is usually used to mark the beginning of
addressing and control information in a message.

STX (0/2) stands for start of text, and is intended to flag the actual start of end-user
information in a message.

ETX (0/3) stands for end of text to signal the end of a message. This is a bit like
“over” in radio communications.

EOT (0/4) stands for end of transmission, and is intended to signal a final disconnect
(like “over and out”).

ENQ (0/5) stands for enquire, and is intended to be used to ask for some sort of status
or identifying message in return.

ACK (0/6) stands for acknowledgement, to signal proper reception of a message.

2.1. DATA REPRESENTATION 41

BEL (0/7) stands for bell, and is intended to generate some sort of attention signal,
usually for an operator.

BS (0/8) stands for backspace, as on a typewriter.
HT (0/9) stands for horizontal tab, as on a typwriter. In the absence of a clear definition

of the tab stops HT is a useless code. A Digital Equipment Corporation convention is one
tab stop every 8 columns.

LF (0/10) stands for line feed, i.e. advance one line on a terminal. In some systems
this implies a return to the left margin. In other systems there is no such implication.

VT (0/11) stands for vertical tab, similar to horizontal tab, except in a downward
direction. On a few systems it has been used to space upwards instead.

FF (0/12) stands for form feed, i.e. advance to the top of the next page.
CR (0/13) stands for carriage return, i.e. return to the first column on a terminal,

usually without a line advance to permit overprinting.
SO (0/14) and SI (0/15) stand for shift out and shift in, for an escape to another

printing character set (SO) and return to the standard set (SI). When more than one
alternate character set is required, an escape sequence with ESC should be used.

DLE (1/0) stands for data link escape. It is intended as an escape character to provide
additional communications control characters, e.g. additional ACKs.

DC1 (1/1), DC2 (1/2), DC3 (1/3) and DC4 (1/4) are device controls 1 - 4. They are
intended for such functions as starting and stopping auxilliary equipment like paper tape.
It is rather common practice to use DC3 to stop transmission and DC1 to restart it. They
are control-S and control-Q, respectively, on most keyboards.

NAK (1/5) stands for negative acknowledge, usually to signal a garbled message.
SYN (1/6) stands for synchronous idle. It is used in systems that transmit continuous

streams of bits without character delimiters, both to start character framing synchroniza-
tion and to fill time without stopping transmission by sending a character which is supposed
to be ignored.

ETB (1/7) stands for end of transmission block. It is similar to ETX, but marks a
block termination in the middle of a message. The message would continue with more
blocks.

CAN (1/8) stands for cancel, i.e. cancel the current message, but is sometimes used in
place of NAK.

EM (1/9) stands for end of medium, e.g. the end of a roll of paper tape or of a reel of
magnetic tape.

SUB (1/10) stands for substitute character. It was intended to hold the place of a
character garbled in transmission, but it is usually used simply as a flag for some special
sort of message, e.g. logical end of file on some Digital Equipment Corporation systems.

ESC (1/11) stands for escape and is usually used as the first character of a group of
characters to perform some expansion of the data delimiter control character set, e.g. ESC
@ for character insert, ESC A for cursor up, ESC B for cursor down, ESC C for cursor
right, and ESC D for cursor left.

42 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

FS (1/12), GS (1/13), RS (1/14) and US (1/15), also known as IS4, IS3, IS2 and IS1,
are intended to be information separators, marking file, group, record and unit boundaries
respectively.

DEL (7/15) stands for delete. Historically, it was intended to work for paper tape as
an erasure – punch out all the holes over a bad character – but in practice it is often used
to mean delete the previous character.

It would be an interesting exercise to examine current communications traffic to see
how many of these characters still deserve their place in the character set.

ISO Printable Characters

This leaves 95 printable characters. For most purposes, remembering the following land-
marks is sufficient. The first printable character is SP, for space, in column 2, row 0, 40
octal, 20 hexadecimal, 32 decimal. The digits 0 through 9 are in column 3, starting in
row 0, with the digit 0 having code 60 octal, 30 hexadecimal, 48 decimal. The upper case
alphabet starts in column 4, row 1, with A having code 101 octal, 41 hexadecimal, 65 dec-
imal. The lower case alphabet starts in column 6, row 1, with a having code 141 octal, 61
hexadecimal, 97 decimal. The characters #, $, @, [, \,], ^, ‘, {, |, } and ~ are allowed to
have national variations. The set given is for the United States. This set is not organized
for minimal entropy, but for clarity, a decision which makes the ISO set less than optimal
for secure systems.

As an example of using the ISO set, consider the sentence, “I love you.” Let us use
the sequence CR-LF as a line terminator. Then the sequence of characters to be sent (not
including the quotation marks) is:

4/9 2/0 6/12 6/15 7/6 6/5 2/0 7/9 6/15 7/5 2/14 0/13 0/10

Notice that in the ISO set the upper case alphabet and the lower case alphabet are each
given in unbroken sequences in order. This was not always the case. The early Baudot
code (actually the Murray code) used the ordering:

BLANK T CR O SPACE H N M LF L R G I P C V E Z D B S Y F X A W J FS U Q K LS

where FS means figure shift, like SO, and LS means letter shift, like SI. One figure shift
set was

BLANK 5 CR 9 SPACE \# , . LF) 4 \& 8 0 : ; 3 " \$? BEL 6 ! / - 2 FS 7 1 (LS

2.1. DATA REPRESENTATION 43

EBCDIC, an IBM code, while not as bad, also has breaks in the alphabet, and has
the lower case letters before the upper case letters, while the ISO set has the upper before
the lower. There were also such codes as BCD, FIELDATA, EXCESS-THREE, CDC
DISPLAY, etc. It is fortunate that we are leaving this tower of Babel behind. (This may
be wishful thinking, but it is the right attitude none the less).

Picture Data

Let us look at a more challenging data representation problem, pictures. Suppose we wish
to transfer pictures into and out of computers. Not being very fussy about picture quality,
let us settle for something as good as a coarse-grained wallet sized color photograph.
Television works well enough for such purposes, so let us look at a television signal.

The picture area is viewed as a screen 3 inches high by 4 inches wide, with 525 scan lines
swept in two interlaced fields of 1/60th second each, so that the entire picture is painted
in 1/30th second. For studio work, almost all of the 525 lines are visible, and 600 to 1000
distinct picture elements (pixels) can be distinguished in any one scan line. However, for
ordinary transmission in color, only about 480 to 500 lines are visible and only 500-600
pixels can be distinguished in any one scan line, so at worst, transmission requires 300000
pixels in 1/30th of a second, or 9,000,000 pixels per second.

..

........*****...........................

.......*......**........................

......*....*.....**.....................

......*.....*......**...................

......*......*.......**.................

......*..*....*.........*********.......

......*..*....*..................**.....

......*..*....*...................*.....

......*...*..*............**.....*......

.......*...**................****.......

........*..........**********...........

........*.........*.....................

........*........*......................

Each pixel is simply a blob of light of some hue and intensity. We are very fussy about
intensity, so we insist on distinguishing 6-8 bits of intensity, but are satisfied with 4-6 bits
of hue. Thus our television picture needs only 90,000,000 to 126,000,000 bits per second.
This information is packed into a useful broadcast signal in ways that use the two major
channel sharing techniques.

44 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

First, to keep the receiver synchronized with the camera, in addition to the picture
information, we have to send horizontal and vertical scan information. This is done by
time division multiplexing. The time for every scan line has a small time window reserved
for a horizontal synchronization pulse, which identifies itself by being well below the black
level of a picture. For our point of view, this amounts to reserving a few bit patterns for
sync pulses rather than pictures, reducing the possible number of distinct picture levels.
Vertical synchronization pulses are needed every 262 1/2 scan lines and can be distinguished
from the horizontal pulses by knowing that they must fit into a narrow frequency band
near 60 Hz, while the horizontal pulses fit into a narrow frequency band near 15725 Hz.
That is, they share the channel by frequency division multiplexing.

The color information is sent by mixing it with a 3.58 MHz signal, shifting it up in
frequency, sharing the channel by frequency division multiplexing. Frequency division
multiplexing is again used to add a sound channel, and yet again to allow many TV
channels to share the air waves.

The sort of calculations done in the television example have to be done in any data
representation problem: Identify some grouping of the data (e.g. 500 scan lines) to be
transmitted in some known time interval (e.g. 1/30th second). For the major grouping of
data, identify the next level of data grouping (e.g. 600 pixels per scan line) and multiply
(e.g. 300000 pixels in 1/30th second = 9,000,000 pixels per second). Then continue break-
ing down the data groupings and multiplying until we reach bits (e.g. pixel = (intensity,
hue) = 8 bits/intensity + 6 bits/hue = 14 bits, so 9,000,000 pixels/sec = 9,000,000 * 14
bits/sec).

This rather direct approach to encoding picture information can be improved if we
have some knowledge of the probabilities of certain combinations of pixels. For example,
in ordinary television work, there is a very high probability that many pixels in each frame
will have the same values in the next. Usually only some objects in a scene move. Thus
we could attempt to derive a more efficient encoding based on a list of changed pixels.

If the pictures are actually of printed text, large areas will be of a uniform background
hue and intensity, and we could attempt to encode changes in space rather than in time.
These and other techniques have been applied in an attempt to reduce the required band-
width for picture data, but the most common approach is the direct one we have examined.

Summary

In this chapter we have seen how to convert information to streams of zeros and ones,
and compute the required data rates to move such information. Later we will have to add
information to these data streams to provide sufficient redundancy to compensate for line
errors and to provide control information. In many ways data representation lies at the
heart of any communications design. The decisions made in the choice of representation
have consequences at many other points, from biasing hardware error rates to determining
the human response to a system.

2.2. ERRORS 45

Exercises

1. It would be reassuring to know that the number of bits required for a range of states,
R, as specified by the expression for entropy is no greater than log(card(R)). This can be
proven several ways. Do at least two of them.

2. Suppose you had to represent the entire English alphabet by holding two flags in
various positions relative to your body, so that someone could get your messages by looking
at you from a distance. If you are restricting your attention to the upper case letters, how
many distinct positions do you need for each flag? What should you do if your recipient
cannot distinguish left from right?

3. Suppose a foreign alphabet must be represented within 7 bit ISO encoded text.
Let the foreign text be no more than ten percent of the total text and require no more
than 26 distinct characters. Suppose runs of 1 to 7 foreign characters are all equally likely.
Compare the efficiency of using an escape character to flag each transliteration of a foreign
character to the efficiency of using SO, SI to bracket runs of such characters.

4. There may be much higher resolution television in the future. Redo the example in
the text on the assumption that there will be 1000 visible scan lines with 1200 distinguish-
able pixels on each line.

5. Raster displays of pictures suffer from the disturbing presence of the raster. When
making high resolution line drawings, a better appearance can be achieved by drawing
strokes directly. Suppose we wish to transmit pictures consisting of up to 6000 strokes
each, drawn on a 1000 by 1000 grid, where a new picture is required every 1/30th of
a second. Compare the required data rate to a 1000 by 1200 raster scan system using
intensities at only two levels and having no hue selection. Suppose 60000 strokes were
required instead of 6000.

6. When ISO characters are sent, they are usually sent least significant bit first, seven
bits in an eight bit field, with the most significant bit either set to zero, or used to carry
parity information. Produce the bit stream for “I love you.”, assuming the most significant
bit to be a zero.

2.2 Errors

The two major objectives of a data communications line handler are to mask the errors of
the communications medium and to provide flow control. In this chapter we will consider
communications line errors.

In order to detect an error in a message, we must add sufficient redundant information
to each message to make it highly unlikely that an error will change both the message
and the redundant information in a consistent manner. We will need an estimate of the
probabilities of various patterns of errors in order to be able to estimate the required

46 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

degree of redundancy. Having detected the error we might attempt to use the redundant
information to correct the message, or simply to request a retransmission.

Rather than go into any great detail about particular physical media at this time, let
us adopt a simplified view of a data communications line as an entity which accepts a
message as a serial stream of bits at one end, and delivers a possibly distorted version of
the same stream of bits sometime later at the destination. A bit, i.e. a zero or one, will
be represented by a choice of two states on the medium. Many media are capable of more
than two useful states, but this simplified view will be sufficient for an analysis of errors.

The Nature of Communications Errors

Errors in a communications line may be due to inherent limitations of the medium chosen
or due to external noise sources. For example, all electrical systems are subject to internal
thermal noise. Random motions of atoms in a wire create signals which are added to
any data stream. We can cool the system to reduce such noise, but, for most practical
purposes, thermal noise cannot be removed. An example of externally induced noise in
electrical communications systems is the noise pulse generated by a lightning strike. Even if
lightning misses a wire, it generates a strong radio pulse which can swamp many consecutive
bits of a signal.

Thermal noise is continuously present. One data bit may be affected by thermal noise,
and the next not. The error in one bit is independent of the error in the next. Lightning is
intermittent. When one bit is affected, the next few are also likely to be affected. This is
a burst error. Any source of noise, internal or external, which works on a time-scale long
compared to the data rate on the line, will produce a pattern of burst errors.

Unless we have reason to believe that burst errors cannot occur in a particular system,
we would be wise to design our error handling to allow for them. For example, rather than
intersperse redundant information for error detection within a message, it is best to save
the redundant information for transmission after the message, so that a burst is not likely
to clobber both the message and the check information.

Thus far we have made the implicit assumption that there is no direct correlation
between the errors and the data pattern. For some communications media, however, certain
data patterns will be more prone to errors than others. For example, an electrical system
subject to thermal noise might well be more likely to accidentally convert a zero bit into
a one bit, than a one bit into a zero bit. We will return to this problem when we consider
particular media. For the moment we assume a symmetric response to errors.

Major Techniques

The major techniques for error detection are echo-checking, majority logic, and check codes.
In echo-checking, the receiver of the message returns a copy to the sender. The sender must
have retained a copy of the information sent to compare against the echoed copy. If the

2.2. ERRORS 47

echo agrees with the original message, it is highly unlikely that a transmission error has
occured, and the next message can be sent, otherwise the message in error must be sent
again. Provision must be made to distinguish retransmissions from original transmissions.

In majority logic, at least three copies of each message are sent and compared with
one-another. If all agree, the receiver accepts the message. If any disagree, the receiver
may either take the majority opinion as to the content of the message or may request
retransmission.

When a check code is used, bits are added to the original message in such a way that
errors are unlikely to change both the original message and the check code into another
message with a valid check code. Majority logic is an extreme example of this approach.
As we will see, much more efficient check codes are available. As with majority logic, we
will have a choice of using the check code to guess at the intended message or simply as a
means of deciding to request a retransmission.

In echo-checking, the communications line must carry twice the primary traffic, one copy
in each direction. In order for the method to fail, an error must occur on the forward path
which is exactly matched by a complementary error on the reverse path. If the errors are
simply random distortions of the messages with suitably low probability of any particular
error pattern, this approach can produce very low undetected error rates. However, if there
is a systematic error in the medium, it is quite possible to have an invertable error in the
line producing large numbers of undetected errors.

In majority logic, the communications line must carry at least three times the primary
traffic. In order for the method to fail, a majority of the copies must have the same error.
For example, if messages are just one bit long, and each bit has a probability of error p,
then an erroneous bit will be mistakenly accepted if at least two out of the three bits are
in error, which event has probability 3p**2 - 2p**3. If we use majority logic only as a
detection scheme, then an erroneous bit could be mitakenly accepted only if all copies were
in error, a p**3 probability.

Check Codes

Let us consider check codes. A block of k data bits may have, say, c bits of redundant
check information appended. The combined k+c bit string is called a code word. Two
code words which differ in d bit positions are said to have Hamming distance d. If for all
possible k bit data blocks, the corresponding code words differ in at least d bit positions,
then any change of d-1 or fewer bits in a valid code word must produce an invalid code
word. If that were not the case, then we could take the valid code word for which a change
of d-1 or fewer bits made another valid code word and have two valid code words which
differed in fewer than d bits. That is, for a code in which all valid code words have a
Hamming distance d from one another, we can detect all errors of fewer than d bits.

Now suppose no more than (d-1)/2 bits in a code word of such a code are changed to
make an invalid code word. No other valid code word could also have produced the same

48 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

invalid code word with (d-1)/2 or fewer bit changes. For if there were another such valid
code word, no more than d-1 changes would be needed to go from one valid code word to
the other. Thus, for a code in which all valid code words have a Hamming distance d from
one another, we can detect and correct all errors of (d-1)/2 or fewer bits.

Suppose we wish to detect all errors of 1 bit in a message. Clearly, it is sufficient to
append a parity bit to make a code word. For example, we might use odd parity, i.e. add
a 1 bit if the number of 1 bits in the message is even, a zero bit otherwise, so that the
total number of 1 bits is odd. Any one bit error will make the parity even, flagging the
error. This is a very efficient code for detecting one bit errors, especially when we make
the messages longer, but it is easily fooled by multi-bit errors. It would be nice if we could
find efficient codes for detecting and correcting multi-bit errors.

Shannon’s Theorem

The following theorem by Shannon says that, for sufficently long message lengths we can
devise such codes:

Theorem (Shannon 1948). Suppose the probability of a 0 being changed to a 1 or a 1
being changed to a 0 is at most p. Suppose R (for rate) satisfies

0 < R < 1 + p*log(p) + (1-p)*log(1-p)

and for any n we have messages of Rn bits to transmit as code words of n bits, and
we will decode the received code words by selecting a message with code word at minimal
Hamming distance from the received code word, then given any epsilon > 0, there is an
n and a code with code words of length n, such that the probability of misidentifying a
message is less than epsilon.

Coding Schemes

There are many coding schemes, involving trade-offs between efficiency and difficulty of
implementation. The simplest to implement and the least efficient are simple majority
logic codes, which just transmit the same information at least 3 times, and let the majority
rule. Slightly more complex are parity checks, in which selected portions of each code word
are required to have an even, or odd, number of 1’s. The study of such codes is handled
within the theory of linear codes. A subset of the linear codes of particular utility are the
cyclic codes, which are obtained by treating the message to be encoded as a polynomial
of very high degree, and doing a long division by a special generator polynomial to get a
remainder which is used as the redundant information.

Parity checks and cyclic codes are the most commonly used codes in data communica-
tions, and we will concentrate on them. There are many more codes available. For details

2.2. ERRORS 49

on others, consult van Lint, J.H., “Introduction to Coding Theory,” Springer-Verlag 1982,
171 pp.

In order to compute linear codes, we use arithmetic modulo 2, i.e.

0 + 0 = 1 + 1 = 0
0 + 1 = 1 + 0 = 1
0 * 1 = 1 * 0 = 0 * 0 = 0
1 * 1 = 1

In this arithmetic, the Hamming distance between two code words is just the number
of 1’s (Hamming weight) in the difference (=sum) of the code words treated as vectors.

Linear Codes

A linear code, C, is formed from k-bit messages, M, by a k row by k+c column matrix, G,
and a k+c vector, Q, by

C = M*G + Q.

For example, odd parity is given by

| 1 0 0 0 ... 1 |
| 0 1 0 0 ... 1 |

G = | 0 0 1 0 ... 1 |
| 0 0 0 1 ... 1 |
| . . |
| . . |
| 0 0 ... 1 1 |

Q = (0 0 ... 0 1)

The vector, Q, that we have considered, does not appear in the standard treatment of
linear codes, because it only inverts some bits, not changing the behavior of the code. For
example, it allows us to have odd parity, instead of only even, a distinction of no advantage
in the theory, but of considerable importance in actual data transmission, where it may be
important to break up continuous streams of 0’s. With that in mind, we now drop Q from
the rest of the discussion.

Two messages, M1 and M2, will have the same code word if

50 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

(M1-M2)*G = 0,

i.e. if there is a linear dependence among rows of G. Thus the minimal assumption for
a useful code is that the rows of G be linearly independent.

The Hammimg distance between M1*G and M2*G is the number of 1’s in (M1-M2)*G.
Thus the minimum Hamming distance of the code is the minimum Hamming weight of the
code applied to non-zero messages.

The set of possible code words in applying G is just the set of linear combinations of the
rows of G, so replacing a row of G with a sum of that row and another row cannot change
the set of code words, and thus cannot change the minimum non-zero Hamming weight.
So without any loss of effectiveness in the code, we can combine rows of G. Further, we
can also interchange columns of G without disturbing the error detecting and correcting
properties of the code. This suggests that we apply the standard techniques of linear
algebra to reduce G to echelon canonical form, where the left k columns of G are just the k
by k identity matrix I[k], leaving c columns of redundant parity check information on the
right:

G = | I[k] P |.

Consider the matrix, H,̃ consisting of

| P |
H~ = | |

| I[c] |

which has the property that any row, i, of G dotted with any column, j, of H is of the
form

(0, .., 1[i,i], 0, .., p[i,1], p[i,2], .., p[i,c])
. (p[1,j], p[2,j], .., p[c,j], 0, .., 1[j,j], 0, .., 0)

= p[i,j]+p[i,j] = 0

2.2. ERRORS 51

i.e. G*H=̃ 0, so that it follows that for any code word y = x*G, y*H=̃ 0.

Parity Check Matrix and Syndrome

The transpose, H, of Hĩs called the parity check matrix of the code generated by G, and
for any n-vector y representing a valid or invalid code word, y*H̃is called the syndrome of
y. A vector, y, is a valid code word if and only if the syndrome of y is zero. (We have
proven the “only if”. The proof of “if” is left as an exercise to the reader).

For error detection it is sufficient to detect a non-zero syndrome. For error correction
we want to map vectors with non-zero syndromes into valid code words. To do this we form
the cosets of the code, i.e. we break up all vectors into sets, the members of a given set
sharing the same syndrome. Within each coset, select one vector, e, of minimal Hamming
weight. This vector is called a coset leader. To correct an invalid code word, x, find the
coset leader, e, for the syndrome of x, and use x - e as the corrected, valid, code word.

A code of minimal distance, d, is called perfect if there is a unique coset leader of weight
<= (d-1)/2 for every coset, and quasi-perfect if all coset leaders are of weight <= (d+1)/2.

The matrix Hc̃an be used to determine the minimum distance of the code. Consider a
non-zero code word, y, of weight, d. Then

0 = y*H~

implies a linear relation among d rows of H(̃eqivalently among d columns of H), and
conversely a linear dependence among f rows of Hp̃rovides a non-zero code word of weight
f. That is, the minimum distance of the code, d, is the size of the smallest set of linearly
dependent columns of the parity check matrix.

For example, if we wish to have a code with minimal distance 3, so we can detect an
correct any single bit errors, then every pair of columns of the parity check matrix must
be linearly independent. Since there is a c by c identity matrix in H, this means that every
row of P must have at least two bits set, so that the maximum possible number of rows,
k, of P is given by

2**c (total possible bit combinations)
-c (one bit combinations)
-1 (the zero),

52 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

so that for a distance 3 code of, say, 4 check bits, we can have 2**4-4-1 = 11 data
bits. Such linear codes with pairwise linearly independent parity check matrix columns are
called Hamming codes.

Cyclic Codes

In a cyclic code, the message is treated as the vector of coefficients of a long polynomial, and
the redundant information is the remainder after dividing by a code generator polynomial.
The arithmetic is done modulo 2. Such a code can be treated as a linear code generated
by a matrix formed from all cyclic shifts of the generator polynomial, but it is simpler to
deal with the polynomial and do the long division directly.

Specifically, the steps are as follows (e.g. see Tanenbaum). The polynomial, g(x), of
degree c will provide c check bits. First multiply the polynomial formed from the message
by x**c, to get M(x)*x**c. Then divide M(x)*x**c by the generator polynomial, g(x), to
find the remainder r(x). Transmit the coefficients of M(x)*x* c-r(x) = M(x)*x**c+r(x),
which are the coeficients of a polynomial divisible by g(x). To check a received message,
divide by g(x). The remainder should be zero.

The implementation of such a code has the nice feature that both the transmitting
side and the receiving side do the same long division. The only difference is that the
transmitting side has to supply c 0-bits to get r(x), while the receiving side uses r(x) in
the hope of getting 0’s.

Choice of Polynomial

The choice of polynomials for best error detection is the major question. Since the trans-
mitted code word represents a polynomial divisible by g(x), we only have to look at the
divisibility of possible error polynomials, e(x).

Suppose g(x) is divisible by some polynomial q(x). Then e(x) can be divisible by
g(x), and thus not be detected as an error, only if e(x) is divisible by q(x). Thus we
can make a good generator polynomial out of the product of generator polynomials with
good properties. In particular, the polynomial x+1, when multiplied by any polynomial
gives a polynomial with an even number of terms. To see this, either substitute x=1, as
in Tanenbaum, or notice that any run of 1’s in the coefficients becomes just two 1’s in
the product. It follows that no error polynomial with an odd number of terms can be a
multiple of x+1. (This should remind you of an over-all parity check).

By making g(x) have a constant term, it will detect all error bursts of length <= c.
Assuming all messages to be equally likely, the probability of a longer error burst not
being detected as such is <= 3/2**(c-1).

Three polynomials in current use are

CRC-12 = x**12 + x**11 + x**3 + x**2 + x + 1

2.2. ERRORS 53

CRC-16 = x**16 + x**15 + x**2 + 1
CRC-CCITT = x**16 + x**12 + x**5 + 1

which will detect all double bit errors and all errors of an odd number of bits. The last
two have a probability of less than one in 10**4 of failing to report an error of over 16 bits,
and will report all shorter error bursts.

In order to make practical use of such codes, one has to have an idea of the error rate
of the transmission system and of the acceptable error rate to be achieved. In many cases,
the error rate will be given only as the probability of a one-bit error, but the errors, when
they do occur, will occur in significant bursts. Very short blocks have a good chance of
disappearing altogether. Very long blocks have a good chance of encountering an error
burst, and, despite all assurances above, have a significant chance of that error not being
detected, for a given number of check bits. For an introduction to some of the factors to
be considered in selecting an optimal block size, see Tanenbaum.

Heuristics

There are some heuristics worth bearing in mind. First, it pays to have some separation
between most of the data bits and the check bits, so that a burst error is not likely to
clobber both. Second, messages should begin with some sort of fixed length unique header
and end with a similar trailer. This allows messages truncated fore or aft to be easily
detected.

Naturally, both these ideas are often ignored. For example, many older ISO code based
protocols use 8 bit character frames, with the eighth bit being a parity bit, resulting in
the check information being scattered throughout the message. Other protocols put a
special header checksum directly in the header of a message, instead of with the message
checksum. The argument for this last practice is that the header checksum can be used
to recover the header information, which may be needed to determine the actual message
length. It would be better to have either fixed length messages, or, still better, a unique
end-of-message trailer.

Thus, on the data link layer an reasonable message format would be blocks of the form:
header – message – trailer. The check information would normally be in the trailer, as the
very last information of a block, to minimize the amount of information to be remembered.

Cmputing a Check Character

Once we assume the check character is to come at the end of the message it becomes
feasible to compute a CRC “on the fly” as the message goes past a bit at a time. This is
very natural for communications lines. Suppose the generator polynomial is

54 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

g(x) = g[c]*x**c + g[c-l]*x**(c-1) + .. + g[0]

Start a remainder polynomial

r[0](x) = r[0,c-l]*x**(c-1) + .. + r[0,0]

with all coefficients zero. Now accept a message bit M[1] and compute a temporary
remainder

r(x) = r[0](x)*x + M[1]

If the coefficient of x**c in r(x) is zero, as it must be in this first step, make

r[1](x) = r(x), otherwise

r[1](x) = r(x) - g(x).

In either case go on to the next message bit.
The general step is, thus, given message bits M[1], M[2], . , M[k], and r[i-l](x), form

r[i](X) = (r[i-l](x)*x + Mlil) mod g(x).

It follows immediately that

r[k](x) = (M[1]*x**(k-1) + .. + M[k]) mod g(x).

2.2. ERRORS 55

If we continue with c zero bits, we get the remainder r[k+c] to transmit. When we are
receiving, we continue with the transmitted check bits to obtain r[k+c](x) as the syndrome.

Single Error Correction:

If the error rate is sufficiently low, so that either the probability of multibit errors is
sufficiently low that we need only be concerned with the case of single bit errors, or the
expense of retransmission justifies a special treatment of single bit errors, we might wish
to correct single bit errors. This requires that we have a minumum distance of three, so
that the code can correct single bit errors. In that case it can also detect double bit errors,
so the term SECDED, for single error correction - double error detection, is used. Suppose
the syndrome is not zero. We can correct any single bit error as follows:

Save the syndrome as s(x) and restart the process with r[0](x) = 0, M[1] = 1, and
all other message bits zero. Stop on the first remainder that matches s(x) or when k+c
message bits have been processed without a match. In that case we have at least a double
bit error and cannot correct. Otherwise the shortened message is the correction.

An Example

For example, consider the message 1010101010101010, with the generator polynomial CRC-
CCITT = x**l6 + x**12 + x**5 +1. The long division is then:

1010000010110101

|
10001000000100001|10101010101010100000000000000000

10001000000100001

1000101011l010100
10001000000100001

10111110101000000
10001000000100001

11011010110000100
10001000000100001

10100101101001010
10001000000100001

10110110110101100

56 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

10001000000100001

11111011000110100
10001000000100001

1110011000010101

for check bits of 1110011000010l0l. Now suppose the third bit is inverted in transmis-
sion, so that we get

10001010101010101110011000010101

The syndrome is 0000011011100110. If we start the long division of 100..., we get the
same syndrome for

100000000000000000000000000000

which is the correction bit.
An understanding of the nature of the errors involved is necessary before applying

SECDED. If we have independent single bit errors with a low error rate, as in some memory
systems, then the technique can be quite effective. For example, with a single bit error
rate of 10**-12 and a message length of no more than 1000 bits, SECDED would give an
undetected error rate of better than 10**-18. However, if the errors come in bursts, then
removing one bit errors is not likely to improve the error rate at all, and we had best use
retransmission.

It should be noted that echo-checking is a very effective alternative to SECDED in
systems in which transmission time is not significant and error rates are low. The trans-
mitter can compare the doubly transmitted data to the original to decide if retransmission
is needed. For a bit error rate of p, the probability of an undetected error is that of the
same bit being flipped both ways, or p**2. Because only 1/(1-p) retransmissions are likely,
for low errors rates this provides a major reduction. For example, with a single bit error
rate of 10**-12, the undetected error rate by this technique is almost 10**-24.

Probability of Undetected Errors with CRCS

Let us consider the probability of an undetected error when using a CRC. Suppose that
the probability of a 1 bit error is p. For the moment suppose that one bit errors are

2.2. ERRORS 57

independent of one another If we can detect all errors of e or fewer bits, then we need be
concerned with the probability of errors of at least e+1 bits in the n bits of the frame.
Under our assumption of independence, this is

1 - ((1-p)**n + n*p*(1-p)**(n-1) + .. + C[n,e]*p**e*(1-p)**(n-e)),

where C[n,e] is the binomial coefficient giving the number of combinations of n things
e at a time. The probability of at least two bits being in error is then

1 - ((l-p)**n + n*p*(1-p)**(n-1)),

which, for small p, is approximately

1 - (1 - n*p + n*(n-1)/2*p**2 + n*p - n*(n-1)*p**2)
= (n*(n-1)/2)*p**2.

For example, given p = 10**-5, n < 447, the probability of at least two bits being in
error is also approximately 10**-5.

Under the assumption of burst errors, the probability of many bits being in error is
about the same as the probability of one bit being in error. So, under both the assumption
of independence and under the assumption of burst errors, by taking a sufficiently small
block we can expect to be able to keep the probability of a multi-bit to about the probability
of a one bit error.

Now note that, for a cyclic code, we can make the probability of an error, once it
does occur, not being detected <= 3/2**c, where c is the number of check bits. Thus, for
sufficiently small blocks, we can make the over-all probability of an error occuring and not
being detected

<= 3*p/2**c,

58 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

which allows us to design the number of check bits to meet any required standard
of error. For example, a 16-bit cyclic check on p = 10**-5, n < 447, would give us an
undetected error rate of better than 10**-9.

Suppose p = 10**-12. If bit errors are independent, then messages of up to more
than a million bits will have a probability of multibit errors of no more than 10**-12, and
under both the assumption of independent errors and the assumption of burst errors, such
messages would give us an undetected error rate of better than 10**-16. This is not as
good as the echo-check case, but involves approximately half the overhead.

Summary

In this chapter we have looked at communications line errors. Such errors may consist of
independent one bit errors or of multi-bit bursts. They can be handled by echo-checking,
majority logic, or more efficient check codes. Linear check codes, particularly cyclic codes,
provide a particularly convenient and efficient approach to coding for communications.

Exercises

1. Suppose a particularly noisy line has a probability of a one bit error of 0.25, and
each one bit error is independent of any other What is the probability of at least two bits
being in error in a 3-bit message? What is the probability of at least two bits being in
error in a 10-bit message? How can an undetected error rate of better than 10**-10 be
achieved for such a line?

2. Show how to compute a cyclic code as a linear code using a matrix instead of by
doing long division.

3. Suppose a message is made up of 8 bit characters, and we wish to compute a
longitudinal parity check character, i.e. a character of eight bits, each bit of which is a
parity check bit for one bit position of each character sent. Show how to do this with an
appropriately chosen CRC polynomial.

4. Form all possible 8 bit messages with CRC-CCITT 16 bit check characters appended.
Compute the minimum Hamming distance between resulting code words.

5. Suppose conditions require that a CRC character be transmitted before the message
instead of after. Describe a suitable algorithm, and comment on the memory requirements
and efficiency in contrast to transmitting the check character after the message.

2.3 Error Detecting and Correcting Protocols

Introduction

A communications system must deal w1th a stream of messages, not just one. In the
previous chapter, we saw how to recognize errors ln individual messages. Now we must

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 59

construct the protocols necessary to handle one message after another wlthout dupllcation
or loss of messages. If the error detection scheme used allows the receiver to perform
all available corrections without retransmissions, as wlth an error correcting code, all we
need do is deflne an unamb1guous message frame format. However, it is usually much
more efficient to use an error detect1on scheme with retransmission of the messages 1n
error. This will require control message traffic and retransmission of data, which might
also be hit by line errors. Recovery from such secondary errors might well involve further
message trafflc which might invoke the error recovery scheme, etc., ad infinitum. When
this happens, and happen it does, the commun1cat1ons system may be in trouble

Positive Acknowledgement

To avoid this difficulty, which comes from viewing errors as the exception rather than the
norm, we treat all messages from some node A to some other node B as requiring positive
acknowledgement of receipt within the stream of messages from node B to node A. The
sender must retain a copy of every unacknowledged message.

It may happen that acknowledgement never arrives for some message. In that case the
sender must take some reasonable action. The safest is to send a message saying, “did you
get message such-and-so?” No retransmission takes place until an unambiguous negative
reply is received. The more common approach is simply to retransmit. In effect, silence is
treated as an alternative form of negative acknowledgement, which requires the protocol
to allow for the cases in which a positive acknowledgement was sent and lost, or in which
a positive acknowledgement is sent after the time-out implying negative acknowledgement
expires.

If only one message can be unacknowledged at a given time, and unexpected duplica-
tions are prohibited, it is not necessary to give messages unique labels. In general, however,
time-out duplications are allowed and/or more than one message is handled at a time to
make more efficient use of the hardware. In such cases, each message which may be unpro-
cessed requires a unique label, usually a sequence number modulo the maximum number
of messages to be handled at one time. That sequence number is then used to flag the
acknowledgements and other message status information.

It is tempting to use the availability of negative acknowledgements as a cheap flow
control mechanism. Suppose a receiver has no place to dump the previous message. It
need only NAK or ignore the next message until it has room again. This is wasteful of
resources, especially if the message being repeated is long. It is better to provide a separate
status message indicating that some portion of the data stream should be suspended until
further notice.

60 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

Message Framing

These considerations suggest that a good protocol should have at least the ability to handle
the following types of information:

data

acknowledgement

negative acknowledgement

status request

status reply

We ignore for the moment the non-trivial problems of initialization and disconnection.
In most systems, only the data requires a significant number of bits, so the acknowledge-

ments and status replies are often sent as extra control information with every message,
making any message at all serve as a status request.

While addressing of information may be implicit in the use of a particular line, some
explicit address information usually is included to select among possible destinations, e.g.
among possible outgoing lines of the next node or particular peripherals on the node.
Addressing fields may also help a sending device recognize echoes of its own transmissions.
The decision as to whether to consider this address information as part of the data link
protocol or as part of the next layer up depends on factors outside of the current discussion.
However, most protocols do include at least some minimal addressing in the data link layer.

Thus, a data link layer might form frames with the following information:
Flag for start of frame

Message sequence number

Address field

Status of messages received

Status of data flow controls

Data

Flag for end of data

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 61

Check information

One possible value for the status of messages received could be the sequence number
of the last message accepted. If more than one message can be outstanding it is common
practice for the receiver simply to ignore messages with duplicated message sequence num-
bers. This creates the danger that a message sent to initialize the system or to provoke
status information to help recover from an error might itself be ignored. One can cure this
either by including special frame types which are exempt from the sequencing rules, or by
accepting status information from apparently duplicated frames.

Flow Control for Multiple Data Streams

The value for the status of data flow controls could be a set of flag bits or characters
marking logical data streams which should be suspended or resumed. This is not always
sufficient data flow control information. When traffic for multiple devices shares the same
line, as in a half-duplex line with two-way traffic or in a broadcast system, sending devices
must have some way to take turns. Broadly, the major approaches are:

1. Designate some device as channel access arbitrator with its own communication
channel to each device. The arbitrator starts as master and all other devices are slaves.
None of the slaves may send on the main channel without permission of the master. A
variation on this theme is the use of the main data channel, itself, for granting permission.
The master sends a polling message to each slave in turn, asking it if it has anything to
say In these schemes, the designation of one device as master may be permanent or may
move among devices.

2. Have each device recognize a collision on the channel and back off for some period
before trying again. The choice of period may be deterministic or random. In either case,
such schemes usually work well only with light loading of the channel and short messages.

3. Distribute the arbitration decisions among all devices. For example, sufficient logical
or physical channels might be provided for each device to raise a flag to all other devices
that it needs access, and all devices would grant that access at some well-determined time
after the request. Usually this requires that all devices have an assigned priority and defer
to all higher priority devices. when equal service is required, priorities can be rotated
among the devices. For example, with two devices talking to each other on a single line,
one of them might have the right to keep the line on a collision, while the other was required
to back off. After the higher priority device had completed its traffic, it might exchange
roles with the device at the other end. The difficulty with distributed arbitration is that
simple transmission errors can produce deadlocks or unexpected repeated collisions. This
requires that the arbitration information have very good error handling.

For details on some distributed arbitration schemes, see chapter 7 of Tanenbaum. Con-
trary to the implication of the chapter title, the problems of shared channel access are best
considered in the data link layer rather than in the network layer.

62 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

Bit Oriented versus Character Oriented Protocols

In the design of data link layer protocols, a major consideration is the choice between
character oriented and bit oriented protocols. Originally, the primary traffic in a com-
munications system was printable text. A character set, such as the ISO set, provided
reasonable handling of such traffic. More recently, communications systems have been
expected to handle arbitrary bit patterns, either as a result of encryption schemes, or ef-
ficiently to transmit graphics files, binary object codes, etc. Within a system designed for
printable characters, the general bit patterns have to be mapped into those characters to
avoid conflicts with the control characters. This can require cumbersome code. Also, the
change from parity bits on each character to cyclic codes for entire blocks has made the
eighth bit of each seven bit ISO character in an eight bit field seem wasted. Finally, the
hardware to handle general bit streams has gotten inexpensive. So it is now the fashion
to use bit oriented protocols, though within most computers frames are still handled a
character at a time.

In CCITT X.25 there are only two special bit patterns. The pattern 01111110, called
a flag sequence, marks the end of a frame and/or the beginning of the next frame. It is
also used to fill time between frames like the ISO SYN. The pattern 1111111 is used to
abort a frame. To avoid conflicts with the contents of frames, whenever five consecutive
1 bits have been transmitted, a zero bit in appended, and whenever the pattern 111110 is
received, it is changed back to 11111. In most systems, this process is handled entirely in
hardware and is invisible to the software.

In both bit oriented and character oriented protocols, it is most common to send the
least significant bit of any character or field first. There are enough exceptions to this rule,
however, to cause much mischief. For example, in X.25, ”addresses, commands, responses
and sequences numbers shall be transmitted with the low order bit first,” but the frame
checking sequence ”shall be transmitted to the line commencing with the coefficient of the
highest term.” (There are good reasons for this). In general, one should always check.

It is a common problem of both character oriented and bit oriented protocols that line
errors may clobber the frame start flag. Worse yet, they may clobber the frame end flag,
merging frames. It is not possible to detect these errors when they occur outside the range
protected by a checksum. For this reason, it is good practice always to provide extra fill
before and after frames, and to limit the size of frames. Despite any such precautions,
however, such errors will cause entire frames to be lost, and any protocol has to allow for
this case.

A problem more common to bit oriented protocols is that certain bit patterns may have
significantly higher error rates than others. Many older communications interfaces were
designed on the assumption that they would only have to handle the ISO code as seven bits
plus parity. When presented with the more general patterns of bit oriented protocols, they
may have internal timing failures since they were using bit alternations to help in their
clocking. The bit stuffing of 11111 to 111110 in X.25 helps, but one should not simply

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 63

assume that bit oriented protocols can be handled by all communications systems.

Constructing a Protocol

Let us piece together a template of a data link protocol. The first thing we must do is
define the major procedures needed.

A host transmitting process needs a way to submit messages to the data link layer.
A host receiving process needs a way to accept messages from the data link layer. The
data link layer must manage the message queues created and used by the host process,
extracting one message at a time to transmit, reformatting for identification and error
checking, and queuing messages for transmission when the line is available. A process is
needed to accept incoming messages, validate the check information, move any valid data
to a queue for the appropriate host process and notify the host when data is available.

A possible structure is:

enqueue host message to transmit
|

extract and format host message
|

enqueue data link message for transmission
|

transmit
|

receive
|

extract data link message, check format
|

enqueue host message or flag error
|

extract host message

Circular Buffers

Within the structure we will have to have various data structures which allow the processes
involved to communicate. The most important such data structures are first-in-first-out
(FIFO) queues. Linked lists are a workable solution, but it is educational to consider the
alternative of circular buffers.

In its pure form, a circular buffer consists of a continguous memory area and four
pointers: FIRST, IN, OUT and LIMIT. FIRST points to the start of the buffer, LIMIT
to the location just after the buffer, IN to the next available location for storage into the

64 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

buffer, and OUT to the next location containing data to be extracted.

FIRST ---> start of buffer area
|

data already in buffer
|

IN ---> next empty location
|

last empty location
OUT ---> start of available data

|
data already in buffer

|
end of buffer

LIMIT ---> end of buffer + 1

The process wishing to store data first checks for space available, which is either OUT-
IN-l, if >= 0, or LIMIT-FIRST+OUT-IN-1 otherwise. If the space available is sufficient,
each byte is stored at IN, IN is bumped by 1, compared to LIMIT and reset to FIRST if
necessary. The process wishing to extract data first checks for an empty buffer (IN=OUT),
or for sufficient data, i.e. IN-OUT, if >= 0, or LIMIT-FIRST+IN-OUT otherwise. If
sufficient data is available each byte is extracted at OUT, OUT is bumped by l, compared
to LIMIT and reset to FIRST if necessary. Note that the buffer is full when IN=OUT-1,
and empty when IN=OUT.

The nice property of a circular buffer is that the inserting process and the extracting
process need no interlock, since they never need write access to the same word. Naturally,
if more that one process must insert or extract, the inserting processes must be interlocked
among themselves and the extracting processes must be interlocked among themselves.

Transmission and reception from the line can be handled with circular buffers. If the
line is full duplex and dedicated, the transmit and receive processes have little more to do
than manage buffer pointers. If the line is half duplex or shared, the transmit process must
also wait for the line to be available before sending. Thus the general form of Transmit
and Receive are:

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 65

Transmit:
if IN=OUT then return;
if Line_busy then return;
Acquire_1ine;
while IN!=OUT

(Send BUFFER(OUT);
OUT := 0UT+1;
if OUT=LIMIT then OUT := FIRST)7

Re1ease_line;
return;

end;

Receive:
if Line_quiet then return;
SPACE := OUT-IN-1;
if SPACE<0 then

SPACE := SPACE+LIMIT-FIRST;
if SPACE>0 then

(BUFFER(IN) := Character_from_1ine;
IN := IN+1;
if IN=LIMIT then IN := FIRST)

else Report_data_overrun;
return;

end;

For some kinds of lines it is desirable to mark long breaks and message boundaries in
the buffer. It is also sometimes necessary to break in on the simple FIFO queues with out
of order messages. On the transmit side, for example, we might maintain special flags for
preemptive messages to abort or suspend traffic in the other direction. On the receive side
we would have to recognize such messages immediately.

Once we have a workable transmit-receive approach, we can build the remaining pro-
cesses of a protocol in a similar manner. We will look at them in pairs working out from
the line. Each enqueuing process will act like a variant on the Receive process and be
paired with an extraction process which will act like a variant on the Transmit process.

Enqueuing Data Link Messages for Transmission

The process to enqueue a data link message for transmission must allow for the possibility
that there may not be room in the transmission buffer. As long as we do not allow the

66 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

transmit process to be stopped indefinitely, we need only suspend the enqueuing process
for a while, knowing it will eventually have room. If the transmit process can be blocked,
we need to return an error flag to higher levels after expiration of a timer, so action can be
taken to unblock transmission. (This may require that certain classes of messages, such as
status inquiries and line reinitializations, are allowed to be sent on a “blocked” line). In
any case, the procedure looks very much like Receive.

Extracting Data Link Messages

The process to extract data link messages looks very much like Transmit, except that it
must also perform a CRC calculation. It also faces the possibility of an empty buffer in the
middle of a message. In most cases, some limit can be set for the time to wait for the rest
of the message. when that time limit expires, the process can report a message in error
and erase what it has received thus far. The other possible major error is a CRC error.
The message must also be dropped in this case. In either case, a status flag for a message
received in error should be set, to be cleared when a good message is received.

Enqueuing Host Messages for Transmission

The process to enqueue host messages to transmit will have a structure that depends on
the characteristics of the data link. when error rates are low or transmission error recovery
delays are short compared to the time to transmit a message, a single buffer for a single
data stream may suffice. However, in some cases, we will need multiple buffers, so that one
being blocked for error recovery will leave others free. One such case occurs in protocols
which allow traffic to be suspended indefinitely for a particular data stream. Then separate
buffers are needed for other data streams, and for control messages. Another such case is
in systems where it is desirable to accept messages for a single stream out of order because
transit delays so long that many messages are in transit at any given time and we do not
wish to retransmit all of them on an error. A simple approach to handle this is to use an
outer circular buffer rotating among a set of circular message stream buffers. The outer
buffer should be of sufficient size not to fill before the expected time to recover an error.
The process on the receive side to extract a host message must have a matching structure,
with the additional constraint that the receive host must not take available messages until
all have arrived in proper sequence, since a message in the middle of a sequence may well
be blocked by error recovery. The receive side process can use a set of valid/invalid flag
bits or place special flag bytes in place of unreceived messages.

Consider an example. Suppose typical error recovery takes two message times. Then,
when an error occurs in a message, three message times later the buffer involved will be
handling the next message. In this case, three outgoing buffers, A, B and C, would allow a
smooth flow. The protocol would rotate service among A, B and C in turn. Thus message
n might go to A, n+1 to B, n+2 to C, n+3 to A again, n+4 to B, etc. An error in message

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 67

n would leave the receive process with messages n+1, n+2, n+4, n+5, n+7, etc., until
message n was recovered. Under our assumptions, message n would be recovered after
message n+2, unblocking the fetching of messages by the receive host with no more time
lost than that required to do the error recovery transmissions. If we had used only one
buffer, an extra 2 message times would have been lost.

The other parameter to settle on this level is the number of messages to hold in each
buffer. This depends on the delay expected in getting an acknowledgement back from the
receiver on a message. If it takes k message times to get an acknowledgement, we need
to be able to hold k host messages in the buffer, since we cannot release a host message
until it is acknowledged. Notice that the use of multiple buffers for error recovery timing
reduces this problem, since if we use, say, three buffers instead of one, the apparent time
per message in a given buffer is increased by a factor of three, allowing more time for an
acknowledgement to arrive.

Alternation

Since an acknowledgement cannot arrive in zero time, the common minimum is two mes-
sages per buffer. When extra buffers are used to allow messages out of order, this is usually
also the maximum per buffer. Indeed, it is often the case that room is provided only for the
start of the second message, in the expectation that the necessary space will exist before
it is needed. When only two messages per buffer are used, and full room is provided for
both, a simple alternation scheme (double buffering, swing buffers) is sometimes used in
place of circular buffering.

Extracting and Formatting Host Messages

The process to extract and format host messages has to handle the logic of error recovery.
Each message has to be identified by its buffer and its position within that buffer. Returned
acknowledgements have to specify the same information. If possible, returned negative
acknowledgements should specify at least the buffer involved. It can be helpful also to
send to the transmitter information on the space available in each buffer. The transmitter
can then correct this space information by knowing estimates of the clearance rate of the
receiving host and the time lag of transmission, and avoid sending messages when it is not
likely there will be enough room.

The process to extract a data link message and check the format has to send back either
an acknowledgement for good check information or a negative acknowledgement for bad.
The form of either acknowledgement can be simply an identification of the last correctly
received message for each buffer. If the number of buffers is large, this can consume
too much line time. An alternative is to acknowledge only the last correctly received
message without any gap in the message sequence. Then the sending process must use
carefully balanced timeouts to decide when to retransmit a particular message, since lack

68 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

of acknowledgement may be due to an intermediate blocked message. In that case, when
that intermediate message is retransmitted, the next message in sequence probably should
not be retransmitted until enough time for an updated status reply has elapsed (unless no
other tranmit traffic is ready to go, of course).

Details of Simple Protocols

Having looked at the protocol structure in general, let us look at some simple protocols in
detail.

For a line with simple one way at a time traffic, with transmission time for a single mes-
sage long compared to the end to end transit delay of the line, a simple alternation protocol
will suffice. As the end to end transit delay of the line increases, e.g. by introduction of a
satellite link, it is necessary to enqueue more than one message on the line at a time, using
matching circular buffers, as described above. As the error rate increases, we will have to
introduce the outer layer of circular buffers. This is effectively a time division multiplexing
of the line among several data streams. If messages become long, that multiplexing may
become ineffective, unless the messages are subdivided into shorter transmission blocks.

Simple Alternation Protocol

Let us start with the simple alternation protocol. Each message has an identifier of x or
-x. Think of it as, say, which half of the alternating buffer halves it comes from. The
receive side expects messages of one identifier or the other at any given time. In order
to start things off, the transmit process will have to inquire of the receive process which
identifier it expects next. After that, the transmit process just alternates between the
identifiers. It must allow, of course, for lost or garbled messages, using timers to know
when to retransmit. From the point of view of one combined sequence of events, here is
what happens:

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 69

Start:
|--------------and---------|

Sender inquires Sender starts timer
for receiver status
|
|---------------or---------|-----------or-----------|

Receiver gets Receiver gets Message lost
message ok message garbled |
| | |

Receiver sends Receiver sends Send timer
status x NAK x expires
| / |
|/ -----------------------/ Return to
| Start
| ----------------or--------|

Sender receives Sender fails to
message ok receive message ok
| |

Clear timer and Send timer expires-------Return to
set next message=-x Start
|

\|/
Go to A

70 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

A:----\|/
|

Get next message, y
|

B:----\|
|-----------------and--------|

Send current message Start send timer
|
|-----------------or---------|-----------or---------------|

Receiver gets message Receiver get message Message lost
ok, processes if y=-x garbled, sends NAK x |
Sets x=y in any case | |
and sends ACK y | Send timer

| | expires,
| | return to B
| |
| |-----------or---------------|
| NAK message NAK lost or
| received ok garbled
| | |
| Force timer Send timer
| to expire -------------------expires
|
|--------------or---------|

ACK received ok ACK lost or garbled
Clear send timer Send timer expires
Go to A Return to B

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 71

From the point of view of the receive processes, the state transitions are simply:

--------->-----------	---------------<--------------		
	----->---------	----------<-------	
	Receive		
	Wait-------->-------		
	\|/		
	Message Arrives---->---- Bad, send NAK x		
		\	
	Good Status \		
	Request \		
		\	
	Send Status \		
	-----<----- x Good data message, y		
/ \			
/ \			
find x=y find x=-y			
\ data to host			
\ /			
\ /			
\ /			
-------------<---------------------Set x=y, send ACK x			

72 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

From the point of view of the sender processes, the state transitions are:

Sender Start
|

|------------->-----------Issue status inquiry & start timer
| |
Timer expires--<----------Send Wait #1-----<-----|

/ \ |
/ \--------->-----|

|
Receive good message
with status = x.
Clear timer and set
next message = -x.

|
Get next message, y ----------<--------------|

| |
Send current message----------<--------| |
& start timer | |

| | |
|------>----- Send wait #2--------------->--Timer expires |
| / | \ | |
|-----<-----/ | \---NAK received-->---------| |

| |
ACK,y received ------------->----------------|

Timeouts

Many variations on this structure are possible. We can expand the sender wait logic to use
status inquiries on timeouts, and to check for an incorrect ACK. This would change the
sender logic to:

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 73

|
Get next message, y ----------<--------------|

| |
Send current message----------<--------| |
& start timer | |

----->--Send wait #2--<--Send status inquiry			
/	\ & start timer		
-----<---/	\Timeout-->--		

/ \ | |
/ \-->-----ACK -y or NAK x--->----| |
| received, stop timer |
| |
|------->-----ACK y received------>--------|

We can also add flow control, retransmit and status inquiry limits, etc. The retransmit
limits can be derived from the 1/(1-p) expected number of transmissions by taking running
averages. In making such changes, one must take care to maintain the correctness of the
protocol. As the complexity increases, it becomes more difficult to be certain of doing an
exhaustive enumeration of all possible cases. Rather than confuse the diagrams, let us leave
these features out, and move on to full circular buffers for lines with long transit times.

Protocols for Long Transit Times

The transit time of a line is the time for a given datum to get from one end to the
other. The transmission time for a message is the time it takes to send a message. As
transmission speed or distance increase, transit times become longer relative to transmission
times. When transit times are long we gain efficiency by allowing as many messages to be
unacknowledged as will match the transit time to the transmission time for those messages
and their acknowledgements. This requires general queues at both ends of the line. The
sender must hold copies of the messages not yet acknowledged, and the receiver may have
to hold blocks of messages with place markers for missing ones. At first we will avoid
such gaps on the receive side. The we will allow for them. The sender and receiver must
manage parallel circular buffers. The entries in the buffers might consist of characters or
full messages, or some other storage units. Instead of providing an acknowledgement of
the last good message received, let us have the receiver return the value of the next open
receiver buffer slot, i.e. Receiver buffer IN. The receive processes will then look like:

74 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

|----------------<-------------------|
-------->-----Receive Wait------<-------		
	\	
	\------->-------	
Message Arrives--->---Bad, send NAK-------		
	\ + Receive_buffer_IN	
	\	
	\ ^	
	Good data->--y .ne. Receive_buffer_IN	
	message for	
	buffer pos y	
	y .eq. Receive_buffer_	N
	put message in buffer, advance	
	Receive_buffer_IN	
Good Status		

Send Ack + Request /
Receive_buffer_IN--<--I--<--/

We need to manage the parallel transmit buffer with two OUT pointers. The send
host must add data only in space that has been freed by positive acknowledgement, so
a Transmit buffer OUT pointer is used to mark the data which has gone out and been
acknowledged, while an Unacknowledged transmit buffer OUT pointer is used to mark the
data which has actually gone out to the line. This second pointer may have to be reset
back to Transmit buffer OUT for retransmissions. The send processes which match the
receive processes above are:

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 75

Sender start
Lock out send host

|
|---------->-------Issue status inquiry and start timer
| |
Timer expires--<---Send Wait #1------<----|

/ \ |
/ \---------->----|

|
Receive good message with
Receive_buffer_IN.
Clear timer and set Transmit_buffer_IN :=
Transmit_buffer_OUT :=
Unacknowledged_transmit_buffer_OUT :=
Receive_buffer_IN

|
Release send host

|
Send Wait #2 -----<--------------------------|
/ \ \ |

/ \---------->----| |
/\ |

/ \ |
/ \---Full message arrives from send host |
Send message from -----<------------	
Unacknowledged_transmit_OUT	
Advance Unacknowledged_transmit_OUT	
/ \	
/ \-more messages ---	
	-->--no more messages-->---
start send timers	
\	
\->----Too long since Transmit_buffer_OUT	
advanced, reset Unacknowledged_etc	
to Transmit_buffer_OUT------------->---	
\	
\->----Too long since data from receiver	

76 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

| Send status inquiry---------------->---|
| |

Good message arrives from receiver |
with new Receiver_buffer_IN, advance |
Transmit_buffer_OUT to match------------------->---|

Please note that we have included an explicit send host lockout during initialization.
For the alternation protocol, where status information has only two values, matching the
host’s identification of messages to the receiver’s identification calls for a simple flag. For a
full circular buffer, the correction information is more complex. It is reasonable to provide
a period during which the host is locked out, IN is tampered with, and then the host is
freed.

Allowing Gaps and Messages Out of Order

The difficulty with this protocol is that errors can force retransmission of a great deal
of data. When this is a problem, the protocol can be modified to work with an outer
layer of circular buffer, for which messages are allowed to arrive out of order. In such a
case, the receive processes have to maintain double OUT pointers, so that the receive host
will not be handed a message sequence with gaps, and when a message is received, the
receive processes have to see if all gaps have been filled. It would be tempting to simplify
the protocol by using only one layer of buffer, instead of two. This would however allow
confusion as to what constitutes a retransmission, versus what is a transmission with a
gap in the sequence. The common form of such a protocol uses only a simple alternation
for the inner layer to avoid the ambiguity. The transmit protocol has some difficulty in
deciding how far to back up on an error or timeout, unless status on all inner buffers
is provided. However, when transit delays are long, the number of buffers will be large,
and full status information expensive to transmit. A reasonable compromise is to provide
enough information to see the size of the first gap. when retransmission is called for, the
send processes can then send just enough information to fill that first gap and wait a
while to discover the size of the next one. The other issue we need to address in our final
protocol example is that of reverse traffic and multiple data streams. A solution which
avoids creating unnecessarily complex protocols, is to treat this as a general problem in
line sharing, and assign the line to each task in some fair manner. Simple time-division
multiplexing would suffice, but usually wastes considerable line capacity. If each node can
be certain of at least some access to the line, then the problem becomes classic operating
system resource scheduling, suited to the use of queues with dynamic priorities on top of a
round robin system to ensure eventual access for all data streams. If access is not certain,
a more complex distributed global scheduler may be needed.

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 77

Round Robin Line Sharing

In a simple round robin, each task that needs to use the line is assigned a number. The
line is given to each task in order of those numbers, returning to the first task when the
last task is done. Ideally, each task would get an equal time slice. This would require
an external timer interrupting each task at the appropriate time. We could do this for
messages by ending the current block on timer expiration, attaching a special frame trailer
and starting the next block. However, as long as the messages to be sent are reasonably
bounded in length, we can avoid considerable overhead by advancing the round robin on
message boundaries, effectively using the transmit timing of the line as the scheduling
clock.

Consider such a round robin transmit line manager:

|--------->--------Advance to next buffer--------<---------|
| | \ |
| | \-->--Insufficient Data|
| | to send
| |
| Sufficient data to send
| or flag set for new
| status information
| |
| Wait to acquire line----------<---------|
| | \ |
| | \-->-------------------|
| Line acquired
| Clear flag for new status information
| Transmit buffer number in address field
| Transmit status information
| Transmit data, if available
| |
|--------<------------------|

The definition of“sufficient data to send” will vary. In some implementations, transmis-
sion will start only when a full message is available. In other implementations, in order to
reduce required buffer sizes, transmission will start with only the beginning of a message
in hand in the expectation that the rest will become available in time. If we allow trans-
mission to start before full messages are available we have to allow a timeout which will
force a premature message termination, so other buffers will not be blocked indefinitely.

78 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

Depending on the circumstances, it may or may not be proper to consider messages trun-
cated this way to be in error. It might be argued that one should never allow transmission
to start until the end of the message is available. Certainly, when no other reasons prevail,
it is desirable to keep messages short enough to allow the end to be in hand before the
beginning is sent. However, there are cases which require transmission to start as soon as
possible, as in real-time process control, forcing one to allow partial messages and requiring
the corresponding timeouts.

The matching receive line manager could be:

|-------->---------Receive wait---------<---------------------|
	\ \	
	\---->-------	
Message arrives		
Buffer till checksum--->---Bad message, set		
	flag for new status	
Good data for buffer i		
Extract status information for transmit		
processes on this side		
Move data to buffer i, if space available		
and target position is next	N position	
Set-flag for new status information		
--------<------------------		

If this round robin is being used just to multiplex totally independent data streams, no
particular changes are needed in our earlier protocol examples. However, if we are inserting
this line manager to allow for recovery of messages out of order, more structure is needed.

Data Structures for Out of Order Message Recovery

Recall that the flow of processes handling messages was modelled as:

enqueue host message to transmit
|

extract and format host message
|

enqueue data link message for transmission
|

transmit

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 79

|
receive

|
extract data link message, check format

|
enqueue host message or flag error

|
extract host message

We have replaced the transmit and receive processes with round robin versions. Now
the processes to enqueue data link messages and to extract data link messages must be
modified to coordinate with the round robin. We will allow gaps in the sequences of
messages and recovery of messages out of order by distributing the messages among the
virtual lines created by the round robin. Then each virtual line can use a simple alternation
protocol for error recovery. In order to manage this more complex flow of data, we use a
circular buffer of buffer pointers:

TOB: TOB_FIRST
TOB_IN ---------> buffer into which to enqueue
TOB_OUT ---------> buffer from which to transmit
TOB_LIMIT

TB(i): TB_FIRST(i)
TB_IN(i) -----> location into which to enqueue char
TB_unacknowledged_OUT(i)

-----> location from which to retransmit
TB_OUT(i) -----> location from which to transmit
TB_LIMIT(i)

ROB: ROB_FIRST
ROB_IN ----------> buffer into which to receive
ROB_next_IN -------> optional next buffer into which

to receive
ROB_0UT ----------> buffer from which to extract
ROB_LIMIT

RB(i): RB_FIRST(i)
RB_IN(i) -----> location for next received character
RB_OUT(i) -----> location from which to extract
RB_LIMIT(i)

80 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

We need a transmit outer buffer (TOB), with TOB FIRST, TOB IN, TOB OUT, and
TOB LIMIT. TOB IN points to the next buffer into which to store transmit host mes-
sages when space becomes availble. TOB OUT points to the next buffer from which
to extract a message to transmit. Each transmit buffer, TB(i), needs a TB FIRST(i),
TB IN(i), TB unacknowledged OUT(i), TB OUT(i), and TB LIMIT(i). Similarly, each
receive buffer, RB(i), needs and RB FIRST(i), RB IN(i), RB OUT(i), and RB LIMIT(i).
Finally, the receive outer buffer (ROB) needs an ROB FIRST, ROB IN, ROB OUT, and
ROB LIMIT. We also need an ROB next IN when we wish to avoid providing all the receive
buffer IN pointers as status information. Instead, we can return ROB IN, RB IN(ROB IN),
ROB next IN, and RB IN(ROB next IN) as status. When a transmlt tlmeout occurs,
TB unacknowledged OUT(ROB IN) can be used to reset TB OUT(ROB IN) and, if ROB next IN
is available TB unacknowledged OUT(ROB next IN) can be used to reset TB OUT(ROB next IN).
The effect is to force an eventual retransmlsslon of the f1rst two messages known to be 1n
error The next t1meOUt has to be long enough to allow updated status lHfOImat1On to
arrlve, but could be forced to explre earl1er lf the transmlt l1ne manager runs out of work
to do On this second t1meout, all the TB unacknowledged OUTs mlght as well be reset to
the corresponding TB OUTs.

To implement this logic, the process to enqueue a transm1t host message for th1s data
stream would be:

|------>--------------Walt for space in TOB----<-------------|
| | \ |
| | \----->-------------|
| |
| Wa1t for space in TB(TOB_IN)---<-------|
| | \ |
| | \----->-------------|
| |
| Store message in TB(TOB_IN)
| Advance TOB_IN
|------<--------------Get next transmlt host message

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 81

The matching receive loglc to extract host messages could be handled by a pa1r of
processes:

|------>--------------Wait for space in ROB----<--------------|
| | \ |
| | \----->--------------|
| |
| Wait for full message at RB(ROB_IN)--<--|
| | \ |
| | \----->--------------|
| |
| Advance ROB_IN
| Advance ROB_next_IN, if necessary
|------<-----------------------|

and

|------>--------------Wait for data in ROB----<---------------|
| | \ |
| | \---->---------------|
| |
| Extract message at RB_OUT(ROB_OUT)
|------<--------------Advance ROB_OUT

The buffer i receive logic was taken care of in the receive line manager code. The
transmit logic is the same as in our prior protocol, except that when a transmit timer expires
for the first time, only at most two of the transmit processes have sufficent information to
reset their unacknowledged OUT pointers.

The rest of the details of this last protocol are left as an exercise to the reader.
justification. When such justification exists (e.g. in a common protocol for many tens

of lines, many of which are actually idle much of the time), circular buffers can still be used,
but pointers become indirect virtual addresses working through a mapping table which has
to allow for page faults. Alternatively, general linked lists can be used. In either case,
buffer pool space must be sufficient for peak loads, and processes must be prevented from
hogging buffers. These problems are more commonly handled on the network layer, where
the highly dynamic management of interconnections is well suited to common buffer pools.

82 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

Summary

In this chapter we have looked at the processes needed to implement error detecting and
correcting protocols. There are many protocols that have been developed over the years.
Some are better and many are worse than the ones presented here. The basic idea is, how-
ever, the same: to take a line with a high error rate and no flow control and to provide a line
with a reasonably low error rate and good flow control. The error rate is lowered by provid-
ing sufficient redundant information and using a positive acknowledgement-retransmission
scheme in most cases. Flow control is provided by passing status messages in addition to
the data.

Alternatives to Circular Buffers

There are cases in which the use of circular buffers is not desirable, since the linear ar-
ray allocated may keep memory idle for long periods. With declining memory costs and
increasing software costs, more dynamic memory allocation schemes require considerable

Exercises

1. In the days when Hollerith cards dominated computer input media, a remote batch
terminal consisted of a card reader, a line printer and some sort of operator console, say
a keyboard and display. Assume a card reader presents one 80 character card every tenth
of a second, that a line printer might accept and print one 133 character line every tenth
of a second, and that the operator console accepts and prints 30 characters per second.
Outline an error detecting and correcting protocol suitable for such a terminal connected
to a line capable of handling 600 characters per second with a raw independent bit error
rate of 10**-5. Assume the required net undetected error rate is to be l0**-10. Assume
the line has an insignificant transit time.

2. Revise the outline for problem 1 to allow for use over a satellite link with a very
high data rate and very long transit time.

3. Suppose we invent a new bit stuffing protocol. When a transmit process wants to
send the sequence 0011001100, it will send 00110011010 instead. The sequence 0011001100
on the line will be reserved for message framing. Show the transformations done on the
message:

1111111111000110011010011001100l11ll00110011010001l00110l0ll1111111l

2.3. ERROR DETECTING AND CORRECTING PROTOCOLS 83

4. Consider a circular buffer with FIRST=101, IN=102, OUT=103, LIMIT=110. How
much data is in the buffer? How much free space is available in the buffer?

5. Specify the criteria needed to determine the length of the timeout in a simple
alternation protocol. Be quantitative.

Section Summary

We have explored data representation, error handling, and protocols so that we can handle
data communications lines. The processes considered can be used to construct a data link
layer within a larger communications system, or as the heart of a unitary solution to some
relatively simple communications problem. When we consider larger systems, we will see
that the flow control and error detection techniques used in the data link layer again find
application, because, try as me might, the “error-free” line we create still will have errors
and bandwidth limitations.

84 CHAPTER 2. DATA COMMUNICATIONS LINE HANDLING

Chapter 3

Networks

In this section we consider ways to move data among multiple communicating nodes.
We assume that the techniques of data communications line handling provide lines of
sufficiently low error rates that we can turn our attention to the problems of message
routing and congestion control. Due to the time constraints of a single semester, we will
provide only a brief overview of networks and then an even briefer look at the processes
that come between networks and applications.

3.1 Network Overview

The major questions to be considered in network design are routing and congestion control
in moving data among multiple autonomous communicating nodes. Using error detecting
and correcting protocols, we can asssume that there is a high probability that we can start
data at one point and get it to any connected point unaltered and in the order sent. We
may, however, have many data streams for many destinations. One simple solution is to
provide a direct line from every possible source to every possible destination. When the
pattern of utilization of lines fails to justify the cost of total interconnection, it becomes
desirable to consider grouping data streams on one line. when high reliability is required,
or load to line cost ratios justify it, one data stream may be sent over several parallel lines.

These considerations lead to situations where the end-points which need to commu-
nicate are interconnected indirectly via intermediate nodes and via multiple routes. A
message which is sent may have to be switched many times. The ultimate receiver may
have to decide among many copies of the same message, may have to wait forever for even
one copy, and may have to cope with messages arriving out of order. The techniques con-
sidered in handling individual communications lines apply, but there is some debate as to
where to apply them.

85

86 CHAPTER 3. NETWORKS

Virtual Circuits and Datagrams

A network which provides a ”virtual circuit” service is expected to act like a perfect wire
for the end-point users, while a network which provides ”datagram” service is responsible
only for the integrity of individual messages, not for ensuring their order, or even their
arrival.

The extreme example of a virtual circuit service is a network, such as the older analogue
telephone system, which provides physical circuits. Before a call is placed, a phone is
connected only as far as its local exchange. When the call is placed, a sequence of trunk
lines to the target exchange is reserved for the life of the call, creating a temporary direct
connection between communicating phones. The only involvement of the network during
the call is to monitor the traffic for a disconnect signal (i.e. the calling party hangs up) and
to do accounting. Newer phone systems may use channel sharing on trunk lines, analogue
to digital conversions, etc., but the virtual effect of a physical circuit is still provided.

The extreme example of a datagram service is, as the name suggests, the old telegram
system, where each message was sent to its destination with no attempt to relate it to any
other message. For many years, businesses made effective use of large “tear-tape” shops,
which would get in messages on paper tape from some source, tear them off of the incoming
punch, and manually transfer them to the appropriate outgoing reader. These shops were
the prototypes of what is now done electronically in packet switching networks providing
datagram service.

For most applications, if the network does not provide virtual circuits, some higher
layer will have to do the job. However, there are cases where datagrams are all that are
required In particular, when interconnecting heterogeneous networks, each using internal
datagrams, there is little value in forcing sequencing at the interface. Also, in applications,
such as military command and control, where the network topolgy may be very unstable,
datagrams may be all that can be provided.

Circuit Switching and Packet Switching

A related distinction is between “circuit switching” and “packet switching” networks. In
circuit switching, a complete sequence of lines is provided to a data stream for some period
of time, as in the telephone example above. The data stream can be quite arbitrary, since
it does not have to share the lines. In packet switching, all data is broken into packets of
limited size, and intermediate nodes may share a given line among the packets of many data
streams. Clearly a circuit switched network is well suited to providing virtual circuits, and
a packet switched network is well suited to providing datagram service, but the distinction
is not rigid. As the necessary hardware becomes cheaper, packet switching has found
application as an internal mechanism in more and more formerly circuit switched networks.
When the applications require, a circuit switched network can be used for datagrams.

3.1. NETWORK OVERVIEW 87

Circuit Switching Design and Hierarchies

Design of circuit switching networks is a demanding art. Within a limited time, the system
must piece together a free path from source to destination, keep the path connected as long
as required, and then free all the links when a disconnect is requested. If this last step is
even slightly imperfect, the system will eventually run out of links. As a precaution, such
systems may force a disconnect of a link when there has been no traffic on the link for
some time.

The task of locating free links is simplified by using a hierarchy of nodes patterned
on the telephone system. Most terminals are placed on terminal nodes of the system,
connected only to a local exchange. The local exchanges then have trunk lines to local
exchanges in the same area, and to long distance exchanges to reach other areas.

LDX---------------------------LDX
/ | \ / | \
/ | \ / | \

/ | \ / | \
/ | \ / | \
/ | \ / | \

LCLX---LCLX LDX-------------LDX LCLX---LCLX
/ | | \ \ / / | | \
/ | | \ \ / / | | \
T T T T \ / T T T T

\ /
\ /
\ /
\ /
LDX

/ | \
/ | \

/ | \
/ | \

/ | \
/ | \

LCLX----LCLX----LCLX
/ | \ / | \
/ | _________/ | \

T T T T

88 CHAPTER 3. NETWORKS

If a terminal needs to reach another terminal in the same exchange, only the local
exchange need be involved. If a terminal needs to reach a terminal in another exchange
in the same area, the source local exchange must find a free trunk line to the destination
exchange, then the destination exchange can complete the circuit. Finally, to reach a
different area, the source local exchange must find a free trunk line to a long distance
exchange, which has to find a sequence of free trunk lines to the destination long distance
exchange, which has to find a free trunk line to the destination local exchange, which
completes the connection.

If each local exchange can handle 10000 terminal nodes, and each long distance exchange
can handle 800 local exchanges, and there are 144 possible areas, then this system can
interconnect 1152000000 terminal nodes. (This all should look familiar; see a telephone
book).

The original assumption behind such systems was that most traffic of long duration
would be confined to the local exchanges. However, even when long duration long distance
traffic is common, the basic design is sound. It is only necessary to keep adding trunk line
and exchange switching capacity.

Multiple Alternate Routes

Consider the hypothetical 144 possible areas. Direct trunk lines connecting all of them
would probably be wasteful, yet a strict hierarchy with only one possible route per source-
destination link, would make large portions of the system vulnerable to reasonably likely
trunk (and office) overloads and failures. Alternate routes for traffic are clearly desirable.
Alternatives imply mechanisms for making choices. If the choices need not be too dynamic,
a few central routing control systems could make the decisions, but for large dynamic
systems, the routing decisions have to be more distributed.

One simple approach is to provide each area exchange with a list of alternate next
nodes on all possible paths to each given destination exchange. When a connection fails,
the area exchange blocked tries the next node on its list or reports back a busy signal
if all are blocked. The problem with such an exhaustive search is that it can be very
time consuming. In systems where the time to establish a connection matters, each area
exchange should try routes in decreasing order of likelihood of success. This requlres that
each area exchange have some way of gathering lnformation on good versus bad routes.

Packet Switching Design

In packet switching networks wlth virtual circuits, the circuit establlshment problem is
similar to that for circuit switched networks. The virtual circuit system does have the
option of changing physical routes, while maintaining the virtual circuit. This places a
premium on techniques for rapid determlnation of routes. This is even more the case with
datagrams.

3.1. NETWORK OVERVIEW 89

The solutions whlch have been trled range from simply having each node use internal
information, such as queue lengths and traff1c density, to select the best outgoing line to
use, through periodic queries of neighboring nodes, to full surveys of the topology of the
network. In practice, it appears to be a good compromlse to have each node made aware
of the changes ln the topology of the entlre network fairly infrequently, and to rely on local
information most of the time. This keeps the network free for actual data lnstead of copies
of routing tables most of the time, but avoids having messages sent along impossible paths
and in circles indefinitely.

Deadlocks and Congestion

It is common in packet switching networks to have considerably more line capacity than
buffer capacity in the nodes. This adds serious problems of buffer allocation to the routing
problem. Care must be taken to avoid deadlocks, such a having a node without the buffer
space to accept a message which might let it free buffers waiting for acknowledgements.
Care must also be taken to minimize congestion, in which the percentage of resources
devoted to traffic management rises with increasing load to the detriment of actual delivery
of messages to their destination.

Circuit switching networks are also vulnerable to deadlocks and congestion, but usually
only during the circuit establishment phase, since all necessary resouces for sending traffic
can be considered reserved after that. Virtual circuits in a packet switching network can
also be made to guarantee service after connection, but the temptation to share resources
most effectively may drive a system away from fully reserved resources.

The control of congestion by preallocation cannot work during the circuit establishment
phase of circuit switching and virual circuit packet switching networks, nor in datagram
systems at all, unless one is willing to vastly overcommit resources in the signalling system.
The major approaches to the problem are: packet discarding, limiting the total load on
the system, and using special overload messages to slow senders.

Packet Discarding

Packet discarding, when done early in the life of the discarded packet can be quite effective.
It is a somewhat crude way of informing a sender not to send more data, by simulating
a high error rate. The disadvantage of this approach is that the sender might well keep
trying, instead of getting the intended information that the network is too busy to serve
him at his current data rate.

Limiting Total Load

Limiting the total load on the system also works. One might give each sender positive
permission to send by requiring him to see and replace a special token in the flow of
packets before sending. However, someone has to externally monitor actual load and inject

90 CHAPTER 3. NETWORKS

or remove tokens to keep such a system working, since tokens are just as prone to loss or
error as any other packets.

Overload Messages

Special overload messages, which have the same flavor as flow control messages, provide
great flexibility in controlling congestion. Senders can be informed of the best data rate to
use at any given time, by “choke packets”. The decision on sending back such information
can lie with each receiver as it decides how best to serve its incoming lines.

Broadcast Media

Interesting variations on the problems of routing and congestion occur when many senders
and receivers share the same medium, as on a multidrop line, a radio braodcast system,
or a satellite link. It is a bit like a network in which senders transmit on all outgoing lines
at once (flooding). If all possible receivers are connected directly to that sender, we have
only to worry about sharing the medium. However, if receivers are expected to forward
messages, care must be taken to avoid infinite exponential growth of the number of copies
of the same data. This requires messages to be modified with some sort of hop counter, so
that they can be squelched eventually.

Considerations for Local Networks

When distances among nodes are sufficiently short to make transit times small compared
to transmission times and wire costs are small, network structures which might otherwise
be impractical, become useful. The major interconnection schemes used for local networks
are:

1. Bus - All nodes share a common group of wires. This amounts to a broadcast system.
2. Total Interconnect - Each node has a private line to every other node.
3. Daisy Chain - Each node except the first and last has a link to the next node and

to the previous node. Each node can block transmission to the next node. When the first
node is connected to the last, this becomes a ring.

4. Radial network - Each peripheral node is connected to a common central node, e.g.
to a shared memory.

5. Crosspoint Switch Nodes are connected by a rectangular array of switches Only one
switch in each row or column may be closed at any one time

Each of these systems has its uses.

3.1. NETWORK OVERVIEW 91

Bus

__
| | | | | | | | |
| | | | | | | | |

A bus provides great flexibility in physical network configuration, since each device
simply connects in parallel with all other devices, but, as with any broadcast system, a
bus requires an arbitration mechanism to allocate use of the bus. In local networks it is
feasible to use a master-slave arbitration scheme on a parallel signalling network, so that
bus arbitration for the next cycle can be done in parallel with the current data cycle. An
interesting variation on a bus, which does arbitration on the data lines is to have each
device sense collisions with its tranmissions and try again (carrier sense multiple access
with collision detection). In Ethernet, the current transmission is aborted immediately on
detecting a collision, so a full packet time is not lost. Further, in Ethernet, the probability
of transmission is decreased on each collision to ensure eventual resolution of contention.
(See Metcalfe and Boggs, “Ethernet: Distributed Packet Switching for Local Computer
Networks”, CACM 19, #7, July 1976, pp 395-404).

An instructive example of Ethernet behavior is to consider two contending Ethernet
stations each with an infinite backlog of packets to send. Each starts with a probability
of 1 of transmitting in the next slot. On each collision, each divides the probability of
transmitting by 2. When one finally does transmit, it increases its probability of trans-
mission to l again. It is important to arrange the timing of the system, so that the second
station will transmit immediately after the first and also raise its probability to 1. If this
were not the case, the first station to transmit would eventually lock on to the line. An
alternative would be to have stations maintain a history of their use of the line and modify
their probabilities on the basis of that history.

In our example, after k collisions, the probability of either station transmitting is 2**(-
k). Thus the probability of a new collision is

2**(-2k)

and the probability of one station actually transmitting is

2*2**(-k)*(1-2**(-k)).

92 CHAPTER 3. NETWORKS

Thus the expected time at probability level 2**(-k) is just the probability of reaching
that level times

1/(probability of leaving this level) = 1/(2*2**(-k)-2**(-2k))

The probability, q[k], of reaching probability level 2**(-k) is just the product of the
probability, q[k-l], of reaching the previous level, times the probability of going from the
previous level to this one, i.e.

q[k+l]/q[k] = 2**(-2k)/(2**(-2k)+2*2**(-k)*Il-2**(-k)))
= 2**(-k-1)/(1-2**(-k-l)),

whence the expected time, e[k], at level 2**(-k) is just

| | -m
| | 2

e[k] = 1/(2*2**(-k)-2**(-2k))*| | _______
| | -m
| | 1 -2
m = 1

From which it follows that the expected time per transmission is a sum with rapidly
diminishing terms: 1 + 1.3333 + 0.7619 + 0.2032 + 0.0262 + 0.0017 + 0.0001 + ... =
3.3263. As long as the packets are kept large with respect to the contention intervals, this
represents a small overhead.

3.1. NETWORK OVERVIEW 93

Total Interconnect

/|\
/ | \

/ | \
/ | \
/ / \ \

/ / \ \
/ / \ \
//_____________\\

Total interconnection is suitable when sufficient constant traffic among nodes exists, or
when the risk of a failing shared link disabling more than one data stream is not acceptable.
Hardware costs, however, mount rapidly as the number of nodes increase. For example,
three nodes, each using a $20 interface per line, need only $120 in iterface hardware for
three lines, while 45 nodes would need $39,600 in hardware for 1980 lines. Thus total
interconnect is usually restricted to a small number of nodes.

Daisy Chain

___ ___ ___ ___ ___ ___ ___ ___ ___ ___
|/ \|/ \|/ \|/ \|/ \|/ \|/ \|/ \|/ \|/ \|
| | | | | | | | | | |

Daisy chains simplify arbitration problems, since traffic has to pass through each node
to get to the next. A daisy chain is usually unidirectional. If node m has traffic for node
m+k, it only has to block traffic from lower numbered nodes. The highest numbered node
trying to communicate will be able to do so. This can totally disable all lower nodes
indefinitely. Unless this behavior is desired, as in priority ordering of peripherals, a node
which has had a turn should relinquish control to lower nodes periodically for a sufficiently
long time.

Connecting the ends of a daisy chain to form a ring allows any two nodes to communi-
cate, provided we resolve the following problem. Suppose node l wishes to send a message
to node 3, and node 2 wishes to send a message to node 1, and node 3 wishes to send a
message to node 2. Node 2 will block the 1-3 path, node 3 the 2-1 path, and node 1 the 3-2
path. For such a ring, if it is not to use broadcast contention resolution, an access token
can circulate instead. In the presence of transmission errors, this can cause a deadlock,
unless some node reinserts the token after some timeout.

94 CHAPTER 3. NETWORKS

Radial Network

\ | /
\ | /
\ | /
\ | /
\ | /

________\|/________
/|\

/ | \
/ | \
/ | \

/ | \
/ | \

In a radial network, some central device manages all traffic. This might be a switch,
shared memory, or a host computer. The first two might well simulate a total interconnect,
but at a much lower cost. They might be used to construct a closely coupled parallel
processor out of identical CPUs. The major difficulty is in providing enough bandwidth
in the central node for all the traffic it must handle. It may also be difficult to provide
sufficient system availablity, since an outage of the central node stops all traffic, though
modern hardware can be brought to rather high levels of reliability and availability. A
central node allows support personnel to be centralized around it, rather than having
to move them around among geographically distributed pieces. An advantage of radial
networks over shared media, is that each terminal node has a private line, so that other
terminal nodes cannot corrupt or spy on its traffic. Further, the terminal nodes need not
worry about arbitration for access to a line. A serious disadvantage of radial networks, is
that addition of peripheral nodes always requires expansion of central node capacity.

3.2. HIGHER LAYERS 95

Crosspoint Switch

-----*-----*-----*-----*-----*-----*-----*-----
| | | | | | |
| | | | | | |

-----*-----*-----*-----*-----*-----*-----*-----
| | | | | | |
| | | | | | |

-----*-----*-----*-----*-----*-----*-----*-----
| | | | | | |
| | | | | | |

The crosspoint switch can be used to make a radial network, or to connect multiple
CPUs to multiple memories, or to allow traffic among pairs of terminals, as in a telephone
exchange. When constructed physically as a monolithic array of switches, use for very large
numbers of nodes becomes impractical. Usually, smaller crosspoint systems are cascaded
to achieve large switching systems, making the design more practical.

Summary

The major problems in network design are routing and congestion control. Networks may
provide virtual circuits or datagram service. They may be based on circuit switching
or packet switching. Networks may be totally interconnected, or may have intermediate
nodes in the paths between nodes. In the second case, hierarchical structuring of a network
simplifies both the hardware and software problems. Local networks allow more flexibility
in the choice of network structure.

3.2 Higher Layers

Once we have a network able to move data reliably, we need to provide sufficient facilities to
use it in complex applications. In the ISO Open Systems Interconnect model, one inserts a
Transport layer to assure continuous end-to-end connections of sufficient capacity, a Session
layer to manage call establishment, termination and crash recovery, and a Presentation
layer to provide services such as text compression and character set conversion. We will
look at some of the questions raised in the Transport and Presentation layers. We will also
consider operating system and human interface questions.

96 CHAPTER 3. NETWORKS

The Transport Layer

The transport layer uses the network layer to create end-to-end connections. If the network
provides virtual circuits, the transport layer may use them as is, group them to form higher
bandwidth connections, or share them to match its load to circuit capacity. If the network
provides only datagram service, the transport layer will have to create virtual circuits by
some end-to-end acknowledgement scheme.

Since the network may view an entire host as having a single address, and the transport
layer may have to manage traffic for many processes within a host, the transport layer may
have to function like a local exchange in a hierarchical addressing scheme. However, system
users may want to locate a process by some other, say mnemonic, naming convention. To
solve this problem, a transport layer process serving users may create a general serving
process at some single address which accepts all user calls, identifies the service requested,
and transfers the connection to the proper address. This might remind one of a manual
switchboard operator. It is very similar to the handling of a batch or timesharing job
control process, which manages the user control data stream between transfers of that
stream to specific processes such as compilers, editors and user-created processes. The
initiation and termination of the job might be considered the role of a session layer, rather
than a transport layer.

A further worry about hierarchical addressing is that some nodes may have a structure
which violates the hierarchy. This can be handled by creating virtual exchanges, like the
WATS 800 exchange, which are recognized as requiring special table lookups to actually
route traffic.

Transport Message Queue Sizes

When a transport layer has to manage its own end-to-end acknowledgement scheme, it faces
the same problems as the data link layer, with the added complication that message traffic
may face very random delays. The simplest model to use is that of a Poisson distribution,
in which the probability of exactly n messages arriving during a time interval of length, t,
is

n (-u*t)
(u * t) *e

n!

where u is considered to be the average arrival rate.
Under this assumption, if a node in the network disposes of messages at a rate u[out]

messages per second, while messages arrive at a rate of u[in] messages per second, then the
average queue of messages that will build up for the node is

3.2. HIGHER LAYERS 97

u[in]/u[out]

1 - u[in]/u[out]

messages. In order to have a finite queue, the node must service messages at a faster
rate than that at which messages arrive.

For example, consider a receiver which can process m messages per second. Suppose
messages are sent by a transmitter which can allow up to k messages to be outstanding
at any one time. Suppose that, on the average, from the time a message is sent until the
transmitter sees its acknowledgement, t seconds go by. Then, assuming Poisson distribu-
tions,

u[in] <= k/t
u[out] = m

so the average queue length, N, is given by

k/<t*m) k
N <= ---------- = -----------

1 - k/(t*m) t*m - k

For example, in Tanenbaum, exercise 9, chapter 8, t = 0.2, m = 100, k = 16, so

16
N <= -------- = 4

20 - 16

At 128 bytes per message, this would require 512 bytes of buffer space.

The Presentation Layer

In the presentation layer, we are concerned with such utility services as text compression,
encryption, data base handling and file transfer. Some aspects to terminal handling, such
as the creation of standard virtual terminals, belong in this layer, but other aspects belong
in the physical and data link layers.

98 CHAPTER 3. NETWORKS

Text compression and encryption are both transformations on message text which are
intended to preserve the information but change the form. Compression is done to conserve
resources such as storage space and bandwidth, while encryption is done to enhance secu-
rity. By removing redundancy, text compression before encryption can make the encrypted
text more difficult to crack.

In encryption, the most secure technique is to take all possible messages and assign
them numbers. Then take a truly random list of ciphertext messages and associate the
plaintext messages with them in random order. Prepare a book sorted by ciphertext
messages and deliver it by a secure means to the intended receiver. Prepare a book sorted
by plaintext messages and deliver it by secure means to the intended transmitter. When the
transmitter has a message to send say, “The enemy is coming”, he looks up that message
in his book and finds the ciphertext, say, “Time flys like an arrow”, and transmits the
ciphertext instead. The receiver get the ciphertext and looks up the phrase in his book
to find the message. It is important that there be no structural connection between the
plaintext messages and the ciphertext messages. Thus the message, “The enemy are not
coming”, might well be encrypted as, “Frankly, I am bored.” Once any significant number
of messages have been sent, security can be preserved only by starting over with a new
association between plaintext and ciphertext messages. The extreme case is the once-only
pad.

Such a method, while reasonably secure, is too cumbersome for most applications, so
a regular structure is allowed between the plaintext and the ciphertext, but the algorithm
connecting them is made dependent on a key in some difficult-to-invert manner. It is hoped
that only the key need be kept secure.

Even that is felt to be too cumbersome by some, so they rely on a system in which is
necessary to preserve the security of the decryption key, but in which it does no harm to
make the encryption key public.

For routine communications, the U.S. government is recommending the National Bu-
reau of Standards Data Encryption Standard. This standard takes plaintext in blocks of
64 bits, applies a 56 bit key, and produces a 64 bit ciphertext. As Hellman has shown (see
Tanenbaum, pp 401-404), cracking this system when random 56 bit keys are used is not
impossible, but certainly expensive. However, most people use rather non-random keys, so
that they can remember them. In that case, an exhaustive search to crack a ciphertext is
practical. Even if the keys are as general as strings of 6 upper case letters, that restricts us
to a space of 308,915,776 keys. Assuming we wish to make a sorted file of all encryptions
of a common 64 bit plaintext of, say, 8 blanks, we will have to store 2,471,326,208 bytes,
which would require < 400,000 inches of tape at 6250 cpi, or less than 14 reels at 28800
inches per 2400 foot reel. Since we could create an index which could lead us to one of
these reels quickly, any text containing that plaintext could be cracked in a few minutes.
Even more effective, would be the use of a single disk drive of the required size, which
should reduce the cracking time to seconds.

To be conservative, it is best to assume that no data communications system is totally

3.2. HIGHER LAYERS 99

secure, work on the assumption that all traffic might be tapped and eventually cracked,
and remain constantly vigilant for breaches.

Virtual terminal protocols and file transfer protocols are the two most common presen-
tation layer services. The two are often intertwined, having a process which transfers a file
by acting as a virtual terminal to another host. Pieces of code for these applications may
have to reside in the lowest levels of the data link layer, rather than in the presentation
layer to allow sufficient control over the data flow. For example, terminals requiring a
host to provide a character by character echo would want the echo provided as quickly as
possible, which ususally involves a terminal driver option. Indeed a case might be made for
considering the entire virtual terminal problem as a terminal driver specialization problem,
in which one is trying to provide a terminal driver working from a data base of terminal
characteristics allowing it to work with a variety of terminals.

For terminals directly connected to a time-sharing host, this is the common approach,
but, when an independent network intervenes, a higher level approach is necessary, since
the host no longer has direct access to the terminals. The same sort of comments might be
made about file transfer. While low level hooks for file streaming are appropriate for directly
connected peripherals, a higher level protocol becomes necessary over a network. It becomes
important to standardize access to file directories, layouts of error responses and flow
controls. Unless one is moving files among homogeneous machines, it becomes important
to make data structures self-identifying, so that meanings rather that bit patterns may be
preserved.

Such problems reach their peak in distributed data bases involving heterogenous ma-
chines. Some designers simply restrict all data to, say, meaningless bit streams or ISO
character coded lines. More general approaches are possible, but need considerable devel-
opment.

Operating System Interfaces and Human Interfaces

The two most difficult to design interfaces in data communications involve the operating
system and people, since both involve arbitrary and often irrational constraints. Both force
inconvenient data structures and resource limitations. Most older operating systems were
designed to process simple batch streams of jobs. A few were designed for some directly
connected timesharing terminals and batch terminals. The introduction of general data
communications can be very disruptive. On the lowest level, drivers must be provided with
general timeout mechanisms and the ability to wake up complex chains of serving processes.
On higher levels, processes need to be able to spawn, monitor, and stop subtasks, with
guaranteed CPU service. Data structures have to be shared among many processes with
reliable interlock and memory allocation schemes. Either a great deal of memory must be
available, or process codes must be reentrantly sharable. Detailed process accounting and
reliable process-process protection must be available. Newer vitual memory timesharing
operating systems do provide such features, but the introduction of a data communications

100 CHAPTER 3. NETWORKS

system into even these systems can be an exercise in frustration if not futility, since one
must often work in areas the operating system designer expected never to have a user
touch. This then makes efforts at following operating system upgrades difficult.

On the human level, one must face the fact that people have attention spans which
are very limited in both time and space. Data must be presented slowly and in small
pieces of limited context. People are creatures of habit. Keyboard and screen layouts must
not vary too much from that with which they are familiar or they will make tremendous
mistakes. While the standard typewriter keyboard could certainly be improved upon, its
familiarity makes it the proper base for almost all data terminals. While it is a depressing
waste of wood to have terminals that print on paper rather than just display information,
many people cannot work without paper in their hands. While it would be nice to display
information at very high rates and stop only on packet boundaries, people insist on being
able to read data as it goes by and want the flow stopped on line, paragraph and page
boundaries.

The list continues on and on. Keep in mind the thought that despite their poor design,
people are the intended beneficiaries of work on a data communications system and must
be served.

