
Bernstein + Sons
INFORMATION SYSTEMS CONSULTANTS

5 Brewster Lane, Bellport,  New York 11713-2803
Phone:  1-516-286-1339, Fax: 1-516-286-1999
E-mail:  yaya@bernstein-plus-sons.com

May 1, 1988
Revised April 26, 1997

Some Comments on Highly Dynamic Network Routing
© Copyright 1988, 1997 All Rights Reserved

by

Herbert J. Bernstein

Originally published as Technical Report No. 371
Computer Science Department, New York University,

May 1988, 11 pp.

Notice

This document is provided for informational purposes only.  This document and the information 
contained therein is provided WITHOUT WARRANTY OF MERCHANTABILITY OR 
FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS 
OR IMPLIED.  THE ENTIRE RISK RESULTING FROM ANY USE MADE OF THIS 
DOCUMENT LIES WITH THE USER OF THE DOCUMENT AND NOT WITH THE 
AUTHOR OR PROVIDER OF THIS DOCUMENT.

The author of this document provides it in the good faith belief that the information contained 
therein in correct, but, as with any document, there may be errors and omissions, and this 
document may not be applicable in any particular circumstances.  Comments, corrections and 
suggestions may be directed to yaya@bernstein-plus-sons.com.  Under no circumstances should 
this document be considered as an alternative to consultation with appropriately trained 
professionals.

ABSTRACT

Attempting to dynamically adapt network parameters to the load seen can produce unexpected 
results.  We present a simple model network example which demonstrates unstable behavior 
when traffic is directed according to routing optimized for minimal delay and the load varies at a 
rate comparable to the routing calculation time.  The instability can be avoided by using almost 
any alternate design which avoids the knees on the delay curves, e.g. a Maximum Entropy 
Method design. The delay penalty in this case turns out to be small.  This paper is very 
mathematical, but the point is simple:  attempting make network parameters change as quickly as 
possible may not be an appropriate network management strategy.

1. Introduction

 In teaching about network performance it is sometimes difficult to convince students of some of 
the counter-intuitive facts of network routing.  In this note we present a simple example of the 
instability which can result from too serious an attempt at optimal bifurcated routing on a 



network with changing offered load. The example is given first in the form of a three node 
network of identical lines, and then in the form of a network providing multiple node-disjoint 
multi-hop paths of unequal capacity.  In a large network there can be a significant benefit in 
avoiding poor choices of routing.  When a high speed path of very few hops is available, it would 
seem to be sheer folly to send any traffic along slow multi-hop back-door paths. However, the 
addition of traffic to a route removes some of its capacity, and the next set of messages might 
well be better sent along an alternate path. The assignment of a set of alternate paths with an 
allocation of portions of the offered load among them gives rise to the bifurcated routing 
problem. Under reasonable constraints it is possible to find routings which optimize an 
appropriate payoff function, e.g. average end-to-end delay.  (See [7] and [6].) Such calculations 
can be very time-consuming. A node in the network may not be able to wait for a grand plan 
from a central routing authority to decide where to send the next message. In that case it may be 
desirable to use a simple distributed shortest-path algorithm which allows each node to estimate 
the optimal current path for the next burst of traffic. Schwartz [11, chapter 6] gives a review of 
the common distributed dynamic routing techniques, and notes the necessary relationship 
between the diameter of a network and the number of iterations needed or convergence. Such 
algorithms normally do not give bifurcated routing directly, since they try for a "shortest" path. 
However, if the definition of length of a path is total delay along it, and if current traffic is 
properly accounted, then one can expect that traffic would be diverted from over-loaded paths 
which were once sensed as providing minimal delay, providing a somewhat oscilla-tory 
approximation to optimal bifurcated routing.

There are problems with the distributed algorithms. Kleinrock [10] pointed out that "... 
uncontrolled alternate routing in a congested net can lead to chaos. Indeed, the telephone 
company tends to limit (and even prohibit completely) alternate routing on unusually busy days 
(Mother’s Day, for example)."  As Schwartz notes of a common shortest path algorithm,  
"Although convergence to the shortest path is guaranteed, routing table entries may change 
during the convergence period, giving rise to possible loops during that interval," [11, p 277]. 
Even if one suppresses the creation of loops, there can be serious problems. When the offered 
load on which routing calculations are being done varies significantly on time-scales 
commensurate with the convergence period of the routing algorithm, one has created a feedback 
control system which can oscillate for very long periods. The reader is referred to standard texts 
on Control Theory, e.g. [1].

In this note, we present a simple example of the type of instability which can result from 
computing an optimal bifurcated routing for a load which changes on the time-scale of the 
calculation.  While the example was created to clearly demonstrate the sub-optimal results of 
optimal routing in this case, it is not, in our opinion and observation of the Internet, unrealistic. 
(The Internet is a loose confederation of networks able to provide a reasonable degree of 
interoperability for users on connected hosts. See [5].)  

As a contrast to optimal routing, we will mention routing found by the Maximum Entropy 
Method (MEM) [2-4, 8, 9, 12]. MEM, originally due to Jaynes, comes from the interaction of 
Information Theory with Statistical Mechanics. It works for underdetermined systems, producing 
the smoothest answer consistent with the data. In the case at hand, it would produce network 
flows equalized for whatever parameter we wish to smooth: traffic by links, total queue size 
along paths, etc.  Since we need no more than that qualitative approach for our example, we will 
not present further detail on Maximum Entropy here.

We will form our examples by taking static cascades of independent M/M/1 queues as our model 
of multi-hop network paths, ignoring blocking, dependence in forwarding, and many other 
effects.  Most importantly, we will ignore the probable failure of stochastic equilibrium by using 
M/M/1 queuing models even though we vary the customer arrival rate.  In a network of large 
diameter and heavy traffic, it is not unreasonable to assume that the time scales of routing 
calculations are sufficiently large to consider them as leading to approximate equilibrium queue-
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by-queue.  It would be a good idea to do a more accurate non-equilibrium model, but that would 
take us beyond our simple pedagogical objective into material better suited to a research paper.

2. A Simple Three Node Example

A

C

B

µ(1−α) λ µ(1−α) λ

µ(1−α) λ

Figure 1. Three Node Network Example of Bifurcated Routing.
Traffic flows from A to B either directly or via C.

We will start with a trivial three-node network. Consider a simple example of a network 
consisting of three nodes, A, B, C,  where A  has traffic λ for B  and may route it either directly or 
via C.   We assume independent M/M/1 queues at each node, and an equal service rate µ for each 
queue. We assume that A  supplies a Poisson distributed stream of packets at rate α λ along the 
direct route and (1 − α) λ along the indirect route. Our routing decision is to choose the "best" 
value of α. Assume we seek to control average delay. The average delay is

W = α
1

µ − αλ
 
 
 

 
 
 + 1− α( ) 2

µ − 1 − α( )λ
 

 
 

 

 
 

This equation becomes clearer if we define

ρ =
λ
µ

use a dimensionless delay W µ   (essentially queue length plus one) and define

σ = α −
1

2
Then
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and we seek to minimize W µ   by varying σ.  In this case, it is sufficient to look at the boundary 
case α = 1 ( σ = .5 )  and at the location of zeros of the derivative of W µ   with respect to σ.

The zeros of the derivative are given by

σ = 3 ± 2 2( )
1− ρ

2
ρ

The lower root is the one in the proper range ( −.5 ≤  σ ≤ . 5) as long as ρ  > . 293.  Below that 
we use the direct route. Above that value the routing bifurcates.

Consider a situation in which the offered load switches between, say, ρ = .3 and ρ =.9, spending 
about half its time at each level.  This might be due to the inherent characteristics of the 
applications, or, perhaps due to a periodic sensing of overload at the higher load and a backing 
off to the light load to relieve congestion. The average load is then ρ= . 6, and we face the choice 
of routing for the instantaneous values or for the average. The “optimum” values of α for these 
values of ρ are:

ρ
.3

.6

.9

α
.99

.70

.60

(given to the nearest .01).  Consider the following table of values ofW µ   for these values of α 
and for .5 (the Maximum Entropy value, see below).

α
ρ
.3

.6

.9

.99 .70 .60 .50

1.43 1.55 1.64 1.76

2.46 1.94 1.99 2.14

9.10 2.71 2.55 2.72

From this table, we observe that the average delay using the optimum α values for the ρ = .3 and
ρ =.9 cases is W µ   = 1.99, which is slightly below the average 2.13 of theW µ   values for α = .7. 
We gained about seven percent by using highly dynamic routing. In fact, if we had used a 
dynamic shortest path routing, which would have taken α = 1.0 in all these cases, we would have 
paid a serious delay penalty. Worse yet, suppose we had a processing time for the dynamic 
algorithm comparable to the cycle time of the load and switched to the values of α for ρ = . 3 just 
when the load switched to ρ = .9 and vice-versa. Then we would have an average delay for 
dynamic routing of W µ   > 5.3.  (For ρ=. 3 we would have used α = . 6 and gotten a delay ofW µ   
= 1.64,  while for ρ= . 9 we would have used α = .99 and gotten a delay ofW µ   = 9.10).  Of 
further interest is the fact that the Maximum Entropy value of α = . 5 (assuming we balance 
traffic by links, not paths) gives a true average delay of W µ   = 2.24 using the correct delay 
values of W µ   = 1.76 for ρ = .3 and W µ   = 2.72 for ρ = .9, a penalty of about fifteen percent for 
taking too low a value of α.

If we look at the Maximum Entropy solution for traffic balanced by paths, i.e. making the 
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average queue on the direct path equal to the average queue on the indirect path, we obtain 
bifurcated routing for all values of ρ:

ρ
0.

.3

.6

.9

α
.97

.64

.62

.51

with an average delay for our test case using ρ = . 6 for the alternating traffic of 2.10, a penalty 
of about five percent.  Our conjecture is that the optimal dynamic routing solutions are, in many 
cases, similarly unstable under reasonable dynamic load, and that the Maximum Entropy 
routings will prove a more robust starting point for distributed dynamic adjustments.

3. A More General Case -- Inhomogeneous Rates, Many Paths

Client (source)
Rate λ

Server
 (destination)

l1-hop path of servers rate µ1

ln-hop path of servers rate µn

li-hop path of servers rate µi

Figure 2. Inhomogeneous node-disjoint paths of multi-hop M/M/1 queues.
Traffic αi λ goes onto the ith path and sees li  hops of servers at rate µi .

It may seem we are extracting too much from the three node case. It is more realistic to consider 
a network offering multiple paths with differing numbers of hops of differing capacity.  For 
reliability, it is desirable that separate routes share as few nodes as possible. We will restrict our 
attention to node-disjoint paths in which only the origin and destination are common to distinct 
paths. We also require that on any single path the service rates on all of the links forming the 
path be the same, even though links on different paths may have different service rates. We 
contend that this is not a severe restriction, since very high capacity links in series with much 
lower capacity links will be dominated by the bottleneck formed by the slower links, and can be 
effectively ignored for our purposes. In Section 4, below, we will give a conservative 
approximation to the case of mixed rates on a single path.

Thus consider the extension of this analysis to a network with a single client offering traffic load 
λ trying to reach a server via n node-disjoint paths, where each path, i,  acts as a cascade of li  
independent M/M/1 queues of service rate µi .  Suppose the client allocates his traffic to path i 
with weight αi , providing Poisson distributed traffic at rate αi λ to the path. Then the 
independent M/M/1 queuing model gives an expected delay of
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W =
αi li

µi − αiλ
∑ , for 0 ≤ αi ≤ 1,  αi∑ = 1

Define

di =
αi li

µ i − α iλ

and compute the partial derivatives which will be needed in finding minima of W.

∂di

∂α i

=
µ ili

µi − αiλ( )2

for i  = 1, ..., n − 1 and
∂dn

∂α i

= −
µ nln

µ n − αnλ( )2

by taking αn = 1 - α1  - α2 - ... - αn-1,  so that the critical points of W as a function of 
α1 , ...  αn-1, occur when

0 =
∂W

∂α i

=
µi li

µ i − αiλ( )2 −
µ nln

µ n − α nλ( )2

i.e. when

µ ili

µ i − α iλ( )2 = τ 2

for some τ independent of i, i = 1, ..., n. We will solve these equations for αi , but first note that

µ i − α iλ = ε i

µ ili( )
1

2

τ

with εi= ±1. The negative value of εi  is “unphysical”, since that would require an overload of 
the first queue on path i by the distributed traffic. Thus we accept only the positive roots and 
obtain

αi =
1

λ
µ i −

µi li( )
1

2

τ

 

 

 
 

 

 

 
 

We can solve for τ by

1 = αi =∑ 1

λ
µ i −∑ 1

λτ
µi li( )

1

2∑
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τ =
µ ili( )

1

2∑
µ i − λ∑

so that

αi =
1

λ
µ i − µ j − λ∑( ) µ ili( )

1

2

µ jl j( )
1

2∑

 

 

 
  

 

 

 
  

While all the resulting values of αi are certainly critical points of W, they may not be valid 
minima.  We can eliminate any concern about convexity of the problem by noting that

∂ 2W

∂α i∂α j

=
2µ iλliδ i, j

µ i − αiλ( )3 +
2µ nλln

µ n − αnλ( )3

which, as the sum of a diagonal matrix with positive terms and a scalar times the matrix of all 
ones, is positive definite as long as we have µi  > αiλ.  (This is only to be expected since this 
routing problem is one of a much wider class of convex minimization problems). The real 
question is whether the minima are within the region of interest, 0 ≤  αi  ≤ 1.  We may drive 
some αi  negative with too small a value of λ.  This corresponds to the ρ < . 293 cases in our 
simple example above.  In that case, we must reduce the allowed range of i by dropping 
appropriate paths.

To select the paths to be dropped, order the paths so that

 

µ i

li

is monotone non-increasing with i, i.e. so that the path with the fastest hop-corrected service rate 
comes first and the slowest path comes last. Compare λ to

µ i∑ −
µn

ln

 

 
 

 

 
 

1

2

µ ili( )
1

2∑

If λ is smaller, drop path n and recompute on the reduced network, since in that case αn will be
negative. To see this

0 > αn

if and only if

0 > µn − µ j − λ∑( ) µ nln( )
1

2

µ jl j( )
1

2∑
if and only if
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µ n µ jl j( )
1

2∑
µ nln( )

1

2

< µ j − λ∑

from which the bound on λfollows.

We can actually drop more such lines at the same time, since the effect of taking out lines with 
negative α is to reduce load on other lines, but we cannot assume that the calculation need not be 
repeated for the reduced set, since we have no assurance that more α will not go negative with 
this reduced load.

Once we enter a regime in which the critical points are indeed the minima, we can compute the 
minimal W from

di =
li

λ
µ i

li

 

 
 

 

 
 

1

2 µ jl j( )
1

2∑
µ j − λ∑ −1

 

 

 
  

 

 

 
  

W = di∑
4. Unequal Service Rates on a Given Path

In the previous section, we did not use the fact that the number of hops was an integer, just that it 
was nonnegative. Thus we may perform the same analysis with fractional numbers of hops. This 
allows us to make a conservative correction for paths consisting of links of different rates of 
service. We certainly cannot use a rate any higher than the rate of the slowest link on the path, 
for once we hit the knee on that link the entire path will block. However, estimating all links at 
that lowest capacity gives unduly pessimistic estimates of the response of the path.  Let µi, j be 
the service rates of the l i links on path i, reordered so that µi,1 ≤ µi, j , j = 2, ..., l i .  Then define

li
' =1 + µ i,1

1

µ i, jj= 2

li

∑

as the pseudo-hop count to use of links all of rate µi,1 . The difference between the delay 
estimated on this path with the pseudo-hop count and the real delay is

1 + µ i,1

1

µ i, jj = 2

li

∑
µ i,1 − αiλ

−
1

µi , j − αiλj =1

l i

∑ =
1 −

µ i,1

µ i, j

 

 
 

 

 
 α iλ

µ i,1 − αiλ( ) µi , j − αiλ( )j =1

li

∑ ≥ 0

with equality at αi λ= 0 and for equal service rates.

5. Instability in the General Case

We could extend this example to chains of M/G/1 queues, or even to more general models of the 
node-disjoint paths, but qualitatively we expect the same basic behavior. If we do our route 
planning for a light load case, we will tend to favor the "shortest" paths. If the load then forces 
those paths onto their delay curve knees, that routing will be significantly worse than a route plan 
which off-loaded some portion of the excess load onto longer paths earlier.  It is tempting to 
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think that we can solve this problem by responding to the load change quickly enough. The 
calculation of an optimal bifurcated route for the node-disjoint M/M/1 cascaded path model is 
simple, requiring only accurate data on hop counts and service rates. The difficulty lies in 
gathering the data, not in using it. If we rely on multi-hop distributed reporting of effective 
service rates and connectivity, by the time we have it available for use, it may well be out of 
date. At the very least, if we must compute "optimal" routing, we should do so not for the current 
load, but for a load which we can reasonably expect not to exceed often until the next routing 
update. Accumulation of variances of loads and delays would make such estimates feasible.
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