RasMol 2.7.2.1 is a molecular graphics program intended for the visualisation of proteins, nucleic acids and small molecules, based on Roger Sayles' RasMol_2.6. The program is aimed at display, teaching and generation of publication quality images. RasMol runs on Microsoft Windows, Apple Macintosh, UNIX and VMS systems. The UNIX and VMS systems require an 8, 24 or 32 bit colour X Windows display (X11R4 or later). The program reads in a molecule coordinate file and interactively displays the molecule on the screen in a variety of colour schemes and molecule representations. Currently available representations include depth-cued wireframes, 'Dreiding' sticks, spacefilling (CPK) spheres, ball and stick, solid and strand biomolecular ribbons, atom labels and dot surfaces. The RasMol help facility can be accessed by typing "help " or "help " from the command line. A complete list of RasMol commands may be displayed by typing "help commands". A single question mark may also be used to abbreviate the keyword "help". Please type "help notices" for important notices. RasMol Copyright (C) Roger Sayle 1992-1999 Version 2.6x1 Mods Copyright (C) Arne Mueller 1998 Versions 2.5-ucb and 2.6-ucb Mods Copyright (C) UC Regents/ModularCHEM Consortium 1995, 1996 RasTop 1.3 Copyright (C) Philippe Valadon 2000 Version 2.7.0, 2.7.1, 2.7.1.1, 2.7.2, 2.7.2.1 Mods Copyright (C) Herbert J. Bernstein 1998-2001 rasmol@bernstein-plus-sons.com ?notice ?notices This software has been created from several sources. Much of the code is from RasMol 2.6, as created by Roger Sayle. See: ftp://ftp.dcs.ed.ac.uk/pub/rasmol The torsion angle code, new POVRAY3 code and other features are derived from the RasMol2.6x1 revisions by Arne Mueller. See: ftp://nexus.roko.goe.net/pub/rasmol The Ramachandran printer plot code was derived from fisipl created by Frances C. Bernstein. See the Protein Data Bank program tape. The code to display multiple molecules and to allow bond rotation is derived in large part from the UCB mods by Gary Grossman and Marco Molinaro, included with permission of Eileen Lewis of the ModularCHEM Consortium. The CIF modifications make use of a library based in part on CBFlib by Paul J. Ellis and Herbert J. Bernstein. See: http://www.bernstein-plus-sons.com/software/CBF Parts of CBFlib is loosely based on the CIFPARSE software package from the NDB at Rutgers university. See: http://ndbserver.rutgers.edu/NDB/mmcif/software Please type the RasMol commands 'help copying', 'help general', 'help IUCR', 'help CBFlib', and 'help CIFPARSE' for applicable notices. Please type 'help copyright' for copyright notices. If you use RasMol V2.6 or an earlier version, type the RasMol command 'help oldnotice'. ?copyright Copyright RasMol 2.7.2.1 Molecular Graphics Visualisation Tool 14 April 2001 Based on RasMol 2.6 by Roger Sayle Biomolecular Structures Group,Glaxo Wellcome Research & Development Stevenage, Hertfordshire, UK Version 2.6, August 1995, Version 2.6.4, December 1998 Copyright (C) Roger Sayle 1992-1999 and Based on Mods by Author Version, Date Copyright Arne Mueller RasMol 2.6x1 May 98 (C) Arne Mueller 1998 Gary Grossman and RasMol 2.5-ucb Nov 95 (C) UC Regents/ModularCHEM Marco Molinaro RasMol 2.5-ucb Nov 96 Consortium 1995, 1996 Philippe Valadon RasTop 1.3 Aug 00 (C) Philippe Valadon 2000 Herbert J. RasMol 2.7.0 Mar 99 (C) Herbert J. Bernstein Bernstein RasMol 2.7.1 Jun 99 1998-2001 RasMol 2.7.1.1 Jan 01 RasMol 2.7.2 Aug 00 RasMol 2.7.2.1 Apr 01 and Incorporating Translations by Author Item Language Isabel Serván Martínez, 2.6 Manual Spanish José Miguel Fernández Fernández José Miguel Fernández Fernández 2.7.1 Manual Spanish Fernando Gabriel Ranea 2.7.1 menus and messages Spanish Jean-Pierre Demailly 2.7.1 menus and messages French Giuseppe Martini, Giovanni Paolella, 2.7.1 menus and messages Italian A. Davassi, M. Masullo, C. Liotto 2.7.1 help file This Release by Herbert J. Bernstein, Bernstein + Sons, P.O. Box 177, Bellport, NY, USA yaya@bernstein-plus-sons.com Copyright (C) Herbert J. Bernstein 1998-2001 ?copying rasmol Copying RasMol This version is based in large part on RasMol version 2.7.2, RasMol version 2.7.1.1 and RasTop version 1.3 and indirectly on the RasMol 2.5-ucb and 2.6-ucb versions and version 2.6_CIF.2, RasMol 2.6x1 and RasMol_2.6.4. If you are not going to make changes to RasMol, you are not only permitted to freely make copies and distribute them, you are encouraged to do so, provided you do the following: 1. Either include the complete documentation, especially the file NOTICE, with what you distribute or provide a clear indication where people can get a copy of the documentation; and 2. Please give credit where credit is due citing the version and original authors properly; and 3. Please do not give anyone the impression that the original authors are providing a warranty of any kind. If you would like to use major pieces of RasMol in some other program, make modifications to RasMol, or in some other way make what a lawyer would call a "derived work", you are not only permitted to do so, you are encouraged to do so. In addition to the things we discussed above, please do the following: 4. Please explain in your documentation how what you did differs from this version of RasMol; and 5. Please make your modified source code available. This version of RasMol is _not_ in the public domain, but it is given freely to the community in the hopes of advancing science. If you make changes, please make them in a responsible manner, and please offer us the opportunity to include those changes in future versions of RasMol. ?general ?generalnotice ?general notice General Notice The following notice applies to this work as a whole and to the works included within it: * Creative endeavors depend on the lively exchange of ideas. There are laws and customs which establish rights and responsibilities for authors and the users of what authors create. This notice is not intended to prevent you from using the software and documents in this package, but to ensure that there are no misunderstandings about terms and conditions of such use. * Please read the following notice carefully. If you do not understand any portion of this notice, please seek appropriate professional legal advice before making use of the software and documents included in this software package. In addition to whatever other steps you may be obliged to take to respect the intellectual property rights of the various parties involved, if you do make use of the software and documents in this package, please give credit where credit is due by citing this package, its authors and the URL or other source from which you obtained it, or equivalent primary references in the literature with the same authors. * Some of the software and documents included within this software package are the intellectual property of various parties, and placement in this package does not in any way imply that any such rights have in any way been waived or diminished. * With respect to any software or documents for which a copyright exists, ALL RIGHTS ARE RESERVED TO THE OWNERS OF SUCH COPYRIGHT. * Even though the authors of the various documents and software found here have made a good faith effort to ensure that the documents are correct and that the software performs according to its documentation, and we would greatly appreciate hearing of any problems you may encounter, the programs and documents and any files created by the programs are provided **AS IS** without any warranty as to correctness, merchantability or fitness for any particular or general use. * THE RESPONSIBILITY FOR ANY ADVERSE CONSEQUENCES FROM THE USE OF PROGRAMS OR DOCUMENTS OR ANY FILE OR FILES CREATED BY USE OF THE PROGRAMS OR DOCUMENTS LIES SOLELY WITH THE USERS OF THE PROGRAMS OR DOCUMENTS OR FILE OR FILES AND NOT WITH AUTHORS OF THE PROGRAMS OR DOCUMENTS. Subject to your acceptance of the conditions stated above, and your respect for the terms and conditions stated in the notices below, if you are not going to make any modifications or create derived works, you are given permission to freely copy and distribute this package, provided you do the following: 1. Either include the complete documentation, especially the file NOTICE, with what you distribute or provide a clear indication where people can get a copy of the documentation; and 2. Give credit where credit is due citing the version and original authors properly; and 3. Do not give anyone the impression that the original authors are providing a warranty of any kind. In addition, you may also modify this package and create derived works provided you do the following: 4. Explain in your documentation how what you did differs from this version of RasMol; and 5. Make your modified source code available. ?old ?oldnotice ?rasmol v2.6 notice RasMol V2.6 Notice The following notice applies to RasMol V 2.6 and older RasMol versions. Information in this document is subject to change without notice and does not represent a commitment on the part of the supplier. This package is sold/distributed subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out or otherwise circulated without the supplier's prior consent, in any form of packaging or cover other than that in which it was produced. No part of this manual or accompanying software may be reproduced, stored in a retrieval system on optical or magnetic disk, tape or any other medium, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise for any purpose other than the purchaser's personal use. This product is not to be used in the planning, construction, maintenance, operation or use of any nuclear facility nor the flight, navigation or communication of aircraft or ground support equipment. The author shall not be liable, in whole or in part, for any claims or damages arising from such use, including death, bankruptcy or outbreak of war. ?iucrpolicy ?iucr policy ?iucr policy IUCR Policy The IUCr Policy for the Protection and the Promotion of the STAR File and CIF Standards for Exchanging and Archiving Electronic Data. Overview The Crystallographic Information File (CIF)[1] is a standard for information interchange promulgated by the International Union of Crystallography (IUCr). CIF (Hall, Allen & Brown, 1991) is the recommended method for submitting publications to Acta Crystallographica Section C and reports of crystal structure determinations to other sections of Acta Crystallographica and many other journals. The syntax of a CIF is a subset of the more general STAR File[2] format. The CIF and STAR File approaches are used increasingly in the structural sciences for data exchange and archiving, and are having a significant influence on these activities in other fields. Statement of intent The IUCr's interest in the STAR File is as a general data interchange standard for science, and its interest in the CIF, a conformant derivative of the STAR File, is as a concise data exchange and archival standard for crystallography and structural science. Protection of the standards To protect the STAR File and the CIF as standards for interchanging and archiving electronic data, the IUCr, on behalf of the scientific community, * holds the copyrights on the standards themselves, * owns the associated trademarks and service marks, and * holds a patent on the STAR File. These intellectual property rights relate solely to the interchange formats, not to the data contained therein, nor to the software used in the generation, access or manipulation of the data. Promotion of the standards The sole requirement that the IUCr, in its protective role, imposes on software purporting to process STAR File or CIF data is that the following conditions be met prior to sale or distribution. * Software claiming to read files written to either the STAR File or the CIF standard must be able to extract the pertinent data from a file conformant to the STAR File syntax, or the CIF syntax, respectively. * Software claiming to write files in either the STAR File, or the CIF, standard must produce files that are conformant to the STAR File syntax, or the CIF syntax, respectively. * Software claiming to read definitions from a specific data dictionary approved by the IUCr must be able to extract any pertinent definition which is conformant to the dictionary definition language (DDL)[3] associated with that dictionary. The IUCr, through its Committee on CIF Standards, will assist any developer to verify that software meets these conformance conditions. Glossary of terms [1] CIF: is a data file conformant to the file syntax defined at http://www.iucr.org/iucr-top/cif/spec/index.html [2] STAR File: is a data file conformant to the file syntax defined at http://www.iucr.org/iucr-top/cif/spec/star/index.html [3] DDL: is a language used in a data dictionary to define data items in terms of "attributes". Dictionaries currently approved by the IUCr, and the DDL versions used to construct these dictionaries, are listed at http://www.iucr.org/iucr-top/cif/spec/ddl/index.html Last modified: 30 September 2000 IUCr Policy Copyright (C) 2000 International Union of Crystallography ?cbflib CBFLIB The following Disclaimer Notice applies to CBFlib V0.1, from which this code in part is derived. * The items furnished herewith were developed under the sponsorship of the U.S. Government. Neither the U.S., nor the U.S. D.O.E., nor the Leland Stanford Junior University, nor their employees, makes any warranty, express or implied, or assumes any liability or responsibility for accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use will not infringe privately-owned rights. Mention of any product, its manufacturer, or suppliers shall not, nor is it intended to, imply approval, disapproval, or fitness for any particular use. The U.S. and the University at all times retain the right to use and disseminate the furnished items for any purpose whatsoever. Notice 91 02 01 ?cifparse CIFPARSE Portions of this software are loosely based on the CIFPARSE software package from the NDB at Rutgers University. See http://ndbserver.rutgers.edu/NDB/mmcif/software CIFPARSE is part of the NDBQUERY application, a program component of the Nucleic Acid Database Project [ H. M. Berman, W. K. Olson, D. L. Beveridge, J. K. Westbrook, A. Gelbin, T. Demeny, S. H. Shieh, A. R. Srinivasan, and B. Schneider. (1992). The Nucleic Acid Database: A Comprehensive Relational Database of Three-Dimensional Structures of Nucleic Acids. Biophys J., 63, 751-759.], whose cooperation is gratefully acknowledged, especially in the form of design concepts created by J. Westbrook. Please be aware of the following notice in the CIFPARSE API: This software is provided WITHOUT WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED. RUTGERS MAKE NO REPRESENTATION OR WARRANTY THAT THE SOFTWARE WILL NOT INFRINGE ANY PATENT, COPYRIGHT OR OTHER PROPRIETARY RIGHT. RasMol is a molecular graphics program intended for the visualisation of proteins, nucleic acids and small molecules. The program is aimed at display, teaching and generation of publication quality images. RasMol runs on wide range of architectures and operating systems including Microsoft Windows, Apple Macintosh, UNIX and VMS systems. UNIX and VMS versions require an 8, 24 or 32 bit colour X Windows display (X11R4 or later). The X Windows version of RasMol provides optional support for a hardware dials box and accelerated shared memory communication (via the XInput and MIT-SHM extensions) if available on the current X Server. The program reads in a molecule coordinate file and interactively displays the molecule on the screen in a variety of colour schemes and molecule representations. Currently available representations include depth-cued wireframes, 'Dreiding' sticks, spacefilling (CPK) spheres, ball and stick, solid and strand biomolecular ribbons, atom labels and dot surfaces. Up to 5 molecules may be loaded and displayed at once. Any one or all of the molecules may be rotated and translated. The RasMol help facility can be accessed by typing "help " or "help " from the command line. A complete list of RasMol commands may be displayed by typing "help commands". A single question mark may also be used to abbreviate the keyword "help". Please type "help notices" for important notices. RasMol Copyright (C) Roger Sayle 1992-1999 Version 2.6x1 Mods Copyright (C) Arne Mueller 1998 Version 2.5-ucb, 2.6-ucb Mods Copyright (C) UC Regents/ModularCHEM Consortium 1995, 1996 RasTop 1.3 Copyright (C) Philippe Valadon 2000 Version 2.7.0. 2.7.1, 2.7.1.1, 2.7.2, 2.7.2.1 Mods Copyright (C) Herbert J. Bernstein 1998-2001 (yaya@bernstein-plus-sons.com) ?commands ?keywords RasMol allows the execution of interactive commands typed at the 'RasMol>' prompt in the terminal window. Each command must be given on a separate line. Keywords are case insensitive and may be entered in either upper or lower case letters. All whitespace characters are ignored except to separate keywords and their arguments. The commands/keywords currently recognised by RasMol are given below. Type "help " for more information on each RasMol function. backbone background bond cartoon centre clipboard colour connect cpk define depth dots echo english exit french hbonds help italian label load molecule monitor pause print quit refresh renumber reset restrict ribbons rotate save script select set show slab source spacefill spanish ssbonds star stereo strands structure trace translate unbond wireframe write zap zoom ?backbone Backbone Syntax: backbone {} backbone backbone dash The RasMol 'backbone' command permits the representation of a polypeptide backbone as a series of bonds connecting the adjacent alpha carbons of each amino acid in a chain. The display of these backbone 'bonds' is turned on and off by the command parameter in the same way as with the 'wireframe' command. The command 'backbone off' turns off the selected 'bonds', and 'backbone on' or with a number turns them on. The number can be used to specify the cylinder radius of the representation in either Angstrom or RasMol units. A parameter value of 500 (2.0 Angstroms) or above results in a "Parameter value too large" error. Backbone objects may be coloured using the RasMol 'colour backbone' command. The reserved word backbone is also used as a predefined set ("help sets") and as a parameter to the 'set hbond' and 'set ssbond' commands. The RasMol command 'trace' renders a smoothed backbone, in contrast to 'backbone' which connects alpha carbons with straight lines. The backbone may be displayed with dashed lines by use of the 'backbone dash' command. ?background Background Syntax: background The RasMol 'background' command is used to set the colour of the "canvas" background. The colour may be given as either a colour name or a comma separated triple of Red, Green and Blue (RGB) components enclosed in square brackets. Typing the command 'help colours' will give a list of the predefined colour names recognised by RasMol. When running under X Windows, RasMol also recognises colours in the X server's colour name database. The 'background' command is synonymous with the RasMol 'set background' command. ?bond Bond Syntax: bond + bond pick bond rotate {} The RasMol command 'bond +' adds the designated bond to the drawing, increasing the bond order if the bond already exists. The command 'bond pick' selects the two atoms specified by the atom serial numbers as the two ends of a bond around which the 'rotate bond ' command will be applied. If no bond exists, it is created. Rotation around a previously picked bond may be specified by the 'rotate bond ' command, or may also be controlled with the mouse, using the 'bond rotate on/off' or the equivalent 'rotate bond on/off' commands. ?cartoon Cartoon Syntax: cartoon {} The RasMol 'cartoon' command does a display of a molecule 'ribbons' as Richardson (MolScript) style protein 'cartoons', implemented as thick (deep) ribbons. The easiest way to obtain a cartoon representation of a protein is to use the 'Cartoons' option on the 'Display' menu. The 'cartoon' command represents the currently selected residues as a deep ribbon with width specified by the command's argument. Using the command without a parameter results in the ribbon's width being taken from the protein's secondary structure, as described in the 'ribbons' command. By default, the C-termini of beta-sheets are displayed as arrow heads. This may be enabled and disabled using the 'set cartoons' command. The depth of the cartoon may be adjusted using the 'set cartoons ' command. The 'set cartoons' command without any parameters returns these two options to their default values. ?center ?centre Centre Syntax: centre {} {translate|center} center {} {translate|center} The RasMol 'centre' command defines the point about which the 'rotate' command and the scroll bars rotate the current molecule. Without a parameter the centre command resets the centre of rotation to be the centre of gravity of the molecule. If an atom expression is specified, RasMol rotates the molecule about the centre of gravity of the set of atoms specified by the expression. Hence, if a single atom is specified by the expression, that atom will remain 'stationary' during rotations. Type 'help expression' for more information on RasMol atom expressions. Alternatively the centring may be given as a comma separated triple of [CenX, CenY, CenZ] offsets in RasMol units (1/250 of an Angstrom) from the centre of gravity. The triple must be enclosed in square brackets. The optional forms 'centre ... translate' and 'centre ... center' may be used to specify use of a translated centre of rotation (not necessarily in the centre of the canvas) or a centre of rotation which is placed at the centre of the canvas. Starting with RasMol 2.7.2, the default is to center the new axis on the canvas. ?clipboard Clipboard Syntax: clipboard The RasMol 'clipboard' command places a copy of the currently displayed image on the local graphics 'clipboard'. Note: this command is not yet supported on UNIX or VMS machines. It is intended to make transfering images between applications easier under Microsoft Windows or on an Apple Macintosh. When using RasMol on a UNIX or VMS system this functionality may be achieved by generating a raster image in a format that can be read by the receiving program using the RasMol 'write' command. ?color ?colour Colour Syntax: colour {} color {} Colour the atoms (or other objects) of the selected region. The colour may be given as either a colour name or a comma separated triple of Red, Green and Blue (RGB) components enclosed in square brackets. Typing the command 'help colours' will give a list of all the predefined colour names recognised by RasMol. Allowed objects are 'atoms', 'bonds', 'backbone', 'ribbons', 'labels', 'dots', 'hbonds' and 'ssbonds'. If no object is specified, the default keyword 'atom' is assumed. Some colour schemes are defined for certain object types. The colour scheme 'none' can be applied to all objects except atoms and dots, stating that the selected objects have no colour of their own, but use the colour of their associated atoms (i.e. the atoms they connect). 'Atom' objects can also be coloured by 'alt', 'amino', 'chain', 'charge', 'cpk', 'group', 'model', 'shapely', 'structure', 'temperature' or 'user'. Hydrogen bonds can also be coloured by 'type' and dot surfaces can also be coloured by 'electrostatic potential'. For more information type 'help colour '. ?connect Connect Syntax: connect {} The RasMol 'connect' command is used to force RasMol to (re)calculate the connectivity of the current molecule. If the original input file contained connectivity information, this is discarded. The command 'connect false' uses a fast heuristic algorithm that is suitable for determining bonding in large bio-molecules such as proteins and nucleic acids. The command 'connect true' uses a slower more accurate algorithm based upon covalent radii that is more suitable to small molecules containing inorganic elements or strained rings. If no parameters are given, RasMol determines which algorithm to use based on the number of atoms in the input file. Greater than 255 atoms causes RasMol to use the faster implementation. This is the method used to determine bonding, if necessary, when a molecule is first read in using the 'load' command. ?define Define Syntax: define The RasMol 'define' command allows the user to associate an arbitrary set of atoms with a unique identifier. This allows the definition of user-defined sets. These sets are declared statically, i.e. once defined the contents of the set do not change, even if the expression defining them depends on the current transformation and representation of the molecule. ?depth Depth Syntax: depth {} depth The RasMol 'depth' command enables, disables or positions the back-clipping plane of the molecule. The program only draws those portions of the molecule that are closer to the viewer than the clipping plane. Integer values range from zero at the very back of the molecule to 100 which is completely in front of the molecule. Intermediate values determine the percentage of the molecule to be drawn. This command interacts with the 'slab ' command, which clips to the front of a given z-clipping plane. ?dot surface ?surface ?dots Dots Syntax: dots {} dots The RasMol 'dots' command is used to generate a van der Waals' dot surface around the currently selected atoms. Dot surfaces display regularly spaced points on a sphere of van der Waals' radius about each selected atom. Dots that would are 'buried' within the van der Waals' radius of any other atom (selected or not) are not displayed. The command 'dots on' deletes any existing dot surface and generates a dots surface around the currently selected atom set with a default dot density of 100. The command 'dots off' deletes any existing dot surface. The dot density may be specified by providing a numeric parameter between 1 and 1000. This value approximately corresponds to the number of dots on the surface of a medium sized atom. By default, the colour of each point on a dot surface is the colour of its closest atom at the time the surface is generated. The colour of the whole dot surface may be changed using the 'colour dots' command. ?echo Echo Syntax: echo {} The RasMol 'echo' command is used to display a message in the RasMol command/terminal window. The string parameter may optionally be delimited in double quote characters. If no parameter is specified, the 'echo' command displays a blank line. This command is particularly useful for displaying text from within a RasMol 'script' file. ?english English Syntax: English The RasMol 'English' command sets the menus and messages to the English versions. The commands 'French', 'Italian' and 'Spanish' may be used to select French, Italian and Spanish menus and messages. ?french French Syntax: French The RasMol 'French' command sets the menus and messages to the French versions. The commands 'English', 'Italian' and 'Spanish' may be used to select English, Italian and Spanish menus and messages. ?hbond ?hbonds HBonds Syntax: hbonds {} hbonds The RasMol 'hbond' command is used to represent the hydrogen bonding of the protein molecule's backbone. This information is useful in assessing the protein's secondary structure. Hydrogen bonds are represented as either dotted lines or cylinders between the donor and acceptor residues. The first time the 'hbond' command is used, the program searches the structure of the molecule to find hydrogen bonded residues and reports the number of bonds to the user. The command 'hbonds on' displays the selected 'bonds' as dotted lines, and the 'hbonds off' turns off their display. The colour of hbond objects may be changed by the 'colour hbond' command. Initially, each hydrogen bond has the colours of its connected atoms. By default the dotted lines are drawn between the accepting oxygen and the donating nitrogen. By using the 'set hbonds' command the alpha carbon positions of the appropriate residues may be used instead. This is especially useful when examining proteins in backbone representation. ?help Help Syntax: help { {}} ? { {} The RasMol 'help' command provides on-line help on the given topic. ?italian Italian Syntax: Italian The RasMol 'Italian' command sets the menus and messages to the Italian versions. The commands 'English', 'French' and 'Spanish' may be used to select English, French and Spanish menus and messages. ?labels ?label Label Syntax: label {} label The RasMol 'label' command allows an arbitrary formatted text string to be associated with each currently selected atom. This string may contain embedded 'expansion specifiers' which display properties of the atom being labelled. An expansion specifier consists of a '%' character followed by a single alphabetic character specifying the property to be displayed. An actual '%' character may be displayed by using the expansion specifier '%%'. Atom labelling for the currently selected atoms may be turned off with the command 'label off'. By default, if no string is given as a parameter, RasMol uses labels appropriate for the current molecule. The colour of each label may be changed using the 'colour label' command. By default, each label is drawn in the same colour as the atom to which it is attached. The size and spacing of the displayed text may be changed using the 'set fontsize' command. The width of the strokes in the displayed text may be changed using the 'set fontstroke' command. For a list of expansion specifiers, type "help specifiers". ?expansion ?specifiers ?expansion specifiers ?label specifiers Label Specifiers Label specifiers are characters sequences that are embedded in the string parameter passed to the RasMol 'label' command. These specifiers are then expanded as the labels are drawn to display properties associated with the atom being labelled. The following table lists the current expansion specifiers. The specifier '%%' is treated as an exception and is displayed as a single '%' character. %a Atom Name %b %t B-factor/Temperature %c %s Chain Identifier %e Element Atomic Symbol %i Atom Serial Number %n Residue Name %r Residue Number %M NMR Model Number (with leading "/") %A Alternate Conformation Identifier (with leading ";") ?load Load Syntax: load {} Load a molecule coordinate file into RasMol. Valid molecule file formats are 'pdb' (Protein Data Bank format), 'mdl' (Molecular Design Limited's MOL file format), 'alchemy' (Tripos' Alchemy file format), 'mol2' (Tripos' Sybyl Mol2 file format), 'charmm' (CHARMm file format), 'xyz' (MSC's XMol XYZ file format), 'mopac' (J. P. Stewart's MOPAC file format) or 'cif' (IUCr CIF or mmCIF file format). If no file format is specified, 'PDB', 'CIF', or 'mmCIF' is assumed by default. Up to 5 molecules may be loaded at a time. To delete a molecule prior to loading another use the RasMol 'zap' command. To select a molecule for manipulation use the RasMol 'molecule ' command. The 'load' command selects all the atoms in the molecule, centres it on the screen and renders it as a CPK coloured wireframe model. If the molecule contains no bonds (i.e. contains only alpha carbons), it is drawn as an alpha carbon backbone. If the file specifies fewer bonds than atoms, RasMol determines connectivity using the 'connect' command. The 'load inline' command also allows the storing of atom coordinates in scripts to allow better integration with WWW browsers. A load command executed inside a script file may specify the keyword 'inline' instead of a conventional filename. This option specifies that the coordinates of the molecule to load are stored in the same file as the currently executing commands. ?molecule Molecule Syntax: molecule The RasMol 'molecule' command selects one of up to 5 previously loaded molecules for active manipulation. While all the molcules are displayed and may be rotated collectively (see the 'rotate all' command), only one molecule at a time time is active for manipulation by the commands which control the details of rendering. ?monitor Monitor Syntax: monitor monitor {} The RasMol 'monitor' command allows the display of distance monitors. A distance monitor is a dashed (dotted) line between an arbitrary pair of atoms, optionally labelled by the distance between them. The RasMol command 'monitor ' adds such a distance monitor between the two atoms specified by the atom serial numbers given as parameters Distance monitors are turned off with the command 'monitors off'. By default, monitors display the distance between its two end points as a label at the centre of the monitor. These distance labels may be turned off with the command 'set monitors off', and re-enabled with the command 'set monitors on'. Like most other representations, the colour of a monitor is taken from the colour of its end points unless specified by the 'colour monitors' command. Distance monitors may also be added to a molecule interactively with the mouse, using the 'set picking monitor' command. Clicking on an atom results in its being identified on the rasmol command line. In addition every atom picked increments a modulo counter such that, in monitor mode, every second atom displays the distance between this atom and the previous one. The shift key may be used to form distance monitors between a fixed atom and several consecutive positions. A distance monitor may also be removed (toggled) by selecting the appropriate pair of atom end points a second time. ?pause Pause Syntax: pause wait The RasMol 'pause' command is used in script files to stop the script file for local manipulation by a mouse, until any key is pushed to restart the script file. 'Wait' is synonymous with 'pause'. This command may be executed in RasMol script files to suspend the sequential execution of commands and allow the user to examine the current image. When RasMol executes a 'pause' command in a script file, it suspends execution of the rest of the file, refreshes the image on the screen and allows the manipulation of the image using the mouse and scroll bars, or resizing of the graphics window. Once a key is pressed, control returns to the script file at the line following the 'pause' command. While a script is suspended the molecule may be rotated, translated, scaled, slabbed and picked as usual, but all menu commands are disabled. ?print Print Syntax: print The RasMol 'print' command sends the currently displayed image to the local default printer using the operating system's native printer driver. Note: this command is not yet supported under UNIX or VMS. It is intended to take advantage of Microsoft Windows and Apple Macintosh printer drivers. For example, this allows images to be printed directly on a dot matrix printer. When using RasMol on a UNIX or VMS system this functionality may be achieved by either generating a PostScript file using the RasMol 'write ps' or 'write vectps' commands and printing that or generating a raster image file and using a utility to dump that to the local printer. ?exit ?quit Quit Syntax: quit exit Exit from the RasMol program. The RasMol commands 'exit' and 'quit' are synonymous, except within nested scripts. In that case, 'exit' terminates only the current level, while 'quit' terminates all nested levels of scripts. ?refresh Refresh Syntax: refresh The RasMol 'refresh' command redraws the current image. This is useful in scripts to ensure application of a complex list of parameter changes. ?renum ?renumber Renumber Syntax: renumber {{-} } The RasMol 'renumber' command sequentially numbers the residues in a macromolecular chain. The optional parameter specifies the value of the first residue in the sequence. By default, this value is one. For proteins, each amino acid is numbered consecutively from the N terminus to the C terminus. For nucleic acids, each base is numbered from the 5' terminus to the 3' terminus. All chains in the current database are renumbered and gaps in the original sequence are ignored. The starting value for numbering may be negative. ?reset Reset Syntax: reset The RasMol 'reset' command restores the original viewing transformation and centre of rotation. The scale is set to its default value, 'zoom 100', the centre of rotation is set to the geometric centre of the currently loaded molecule, 'centre all', this centre is translated to the middle of the screen and the viewpoint set to the default orientation. This command should not be mistaken for the RasMol 'zap' command which deletes the currently stored molecule, returning the program to its initial state. ?restrict Restrict Syntax: restrict {} The RasMol 'restrict' command both defines the currently selected region of the molecule and disables the representation of (most of) those parts of the molecule no longer selected. All subsequent RasMol commands that modify a molecule's colour or representation affect only the currently selected region. The parameter of a 'restrict' command is a RasMol atom expression that is evaluated for every atom of the current molecule. This command is very similar to the RasMol 'select' command, except 'restrict' disables the 'wireframe', 'spacefill' and 'backbone' representations in the non-selected region. Type "help expression" for more information on RasMol atom expressions. ?ribbon ?ribbons Ribbons Syntax: ribbons {} ribbons The RasMol 'ribbons' command displays the currently loaded protein or nucleic acid as a smooth solid "ribbon" surface passing along the backbone of the protein. The ribbon is drawn between each amino acid whose alpha carbon is currently selected. The colour of the ribbon is changed by the RasMol 'colour ribbon' command. If the current ribbon colour is 'none' (the default), the colour is taken from the alpha carbon at each position along its length. The width of the ribbon at each position is determined by the optional parameter in the usual RasMol units. By default the width of the ribbon is taken from the secondary structure of the protein or a constant value of 720 (2.88 Angstroms) for nucleic acids. The default width of protein alpha helices and beta sheets is 380 (1.52 Angstroms) and 100 (0.4 Angstroms) for turns and random coil. The secondary structure assignment is either from the PDB file or calculated using the DSSP algorithm as used by the 'structure' command. This command is similar to the RasMol command 'strands' which renders the biomolecular ribbon as parallel depth-cued curves. ?rotate Rotate Syntax: rotate {-} rotate bond {} rotate molecule {} rotate all {} Rotate the molecule about the specified axis. Permitted values for the axis parameter are "x", "y", "z" and "bond". The integer parameter states the angle in degrees for the structure to be rotated. For the X and Y axes, positive values move the closest point up and right, and negative values move it down and left, respectively. For the Z axis, a positive rotation acts clockwise and a negative angle anti-clockwise. Alternatively, this command may be used to specify which rotations the mouse or dials will control. If 'rotate bond true' is selected, the horizontal scroll bar will control rotation around the axis selected by the 'bond src dst pick' command. If 'rotate all true' is selected, and multiple molecules have been loaded, then all molecules will rotate together. In all other cases, the mouseand dials control the the rotation of the molecule selected by the 'molecule n' command. ?save Save Syntax: save {pdb} save mdl save alchemy save xyz Save the currently selected set of atoms in a Protein Data Bank (PDB), MDL, Alchemy(tm) or XYZ format file. The distinction between this command and the RasMol 'write' command has been dropped. The only difference is that without a format specifier the 'save' command generates a 'PDB' file and the 'write' command generates a 'GIF' image. ?source ?scripts ?script Script Syntax: script The RasMol 'script' command reads a set of RasMol commands sequentially from a text file and executes them. This allows sequences of commonly used commands to be stored and performed by single command. A RasMol script file may contain a further script command up to a maximum "depth" of 10, allowing complicated sequences of actions to be executed. RasMol ignores all characters after the first '#' character on each line allowing the scripts to be annotated. Script files are often also annotated using the RasMol 'echo' command. The most common way to generate a RasMol script file is to use the 'write script' or 'write rasmol' commands to output the sequence of commands that are needed to regenerate the current view, representation and colouring of the currently displayed molecule. The RasMol command 'source' is synonymous with the 'script' command. ?select Select Syntax: select {} Define the currently selected region of the molecule. All subsequent RasMol commands that manipulate a molecule or modify its colour or representation only affect the currently selected region. The parameter of a 'select' command is a RasMol expression that is evaluated for every atom of the current molecule. The currently selected (active) region of the molecule are those atoms that cause the expression to evaluate true. To select the whole molecule use the RasMol command 'select all'. The behaviour of the 'select' command without any parameters is determined by the RasMol 'hetero' and 'hydrogen' parameters. Type "help expression" for more information on RasMol atom expressions. ?set Set Syntax: set {