

CIFtbxCIFtbx

PRIMER
PLUS

by

Herbert J. Bernstein

and

Sydney R. Hall

Copyright © 1997, 1998
All Rights Reserved

Please Read The Usage Restrictions and Policy in Appendix A

Preface

The Crystallographic Information File (CIF) format is one of the most commonly used
electronic data handling protocols in chemistry and crystallography for exchanging
and archiving structural and diffraction information. Because the CIF syntax
requirements and data definitions are coordinated and supported by the
International Union of Crystallography as part of their publishing and archival
activities, there is established support for this format both in database entry and in
retrieval tasks. This usage has spawned the need to develop more comprehensive
software for generating, reading and manipulating CIF data.

This book is an instruction and reference manual for programmers employing the
CIFtbx library of Fortran functions to develop CIF applications. Subject to the
conditions specified in Appendix A, the CIFtbx library is freely available software for
non-commercial use. Commercial software developers must seek written permission
from the authors before applying this software. CIFtbx, and associated CIF data
definition dictionaries, may be obtained from various web sites (see Appendix B for
installation instructions).

The CIFtbx library and this manual are intended for both novices and experts of CIF
applications. The toolbox has already been used in the development of CIF
manipulation programs such as Cyclops [Bernstein, Hall 97], CIFIO [Hall 93a], cif2cif
[Bernstein 97a], pdb2cif [Bernstein, Bernstein, Bourne 98] and cif2pdb [Bernstein,
Bernstein 96]. Extracts from some of these applications are used herein to illustrate
various programming approaches.

This edition of the manual is for use with CIFtbx version 2.6. Scientific papers on
CIFtbx [Hall 93c, Hall, Bernstein 96] provide background information on earlier
versions of the tool box but lack the detail of a primer and reference manual. The
CIFtbx tools described in this manual are appropriate for all current CIF applications
and dictionaries. This includes the access and application of data definitions in
dictionaries based on the definition language DDL1 [Hall, Cook 95], and on the
extended language DDL2 [Westbrook, Hall 95] such as the macromolecular
dictionary [Fitzgerald, Berman, Bourne, McMahon, Watenpaugh, Westbrook, 96].

The first two chapters of the manual introduce the general concepts of the CIF syntax
and are intended for programmers who have no prior knowledge of this format. This
is the initial primer information. Later chapters give detailed explanations on the 21
functions and 36 variables that make up the tools, and how they are applied to simple
and complex tasks. The appendices at the end of the manual explain how to
implement the tool box software on your computer, and provide background
information on the DDL used to define CIF data items, and to construct CIF
dictionaries.

CONTENTS

Preface...iii
Recent History and Acknowledgements ...vii
•
Primer Section
1. What is a CIF?..1

1.1. Introduction...1
1.2. Basic syntax ..1
1.3. Case sensitivity ...2
1.4. Special characters..3
1.5. Syntax control words ..4
1.6. File examples ..5
1.7 Data definitions ..7
1.8 Handling DDL1 and DDL2 name structures ...14

2. Overview of the Tool Box ...17
2.1. Introduction...17
2.2. Initialisation Commands ...18
2.3. Read Commands ...19
2.4. Write Commands ..20
2.5. Variables ...22
2.6. Name Aliases ..26

3. How to Use the Tool Box ..29
3.1. Introduction...29
3.2. Reading CIF data ..30
3.3. Reading text data in loops...33
3.4. Reading user-requested data items..35
3.5. Creating a CIF...38
3.6. General tips on applying CIFtbx...40

3.6.1. Reading a CIF ..40
3.6.2. Writing a CIF ...41
3.6.3. Program organisation ...41

•
Reference Section
4. Initialisation Functions...43

4.1. Introduction...43
4.2. init_ ...43
4.3. dict_...44

5. Read Functions...47
5.1. Introduction...47
5.2. ocif_ ..48
5.3. data_ ..48
5.4. bkmrk_ ..49
5.5. find_ ..50
5.6. test_ ...51
5.7. name_ ..53
5.8. numb_..54
5.9. numd_..54
5.10. cmnt_...55
5.11. purge_..55

6. Write Functions..57
6.1. Introduction...57
6.2. pfile_ ...57
6.3. pdata_ ..58

CIFtbx Primer Plus Page - iv Release 2.6

6.4. ploop_..59
6.5. pchar_..60
6.6. pcmnt_...61
6.7. pnumb_..61
6.8. pnumd_..62
6.9. ptext_...63
6.10. prefx_ ..63
6.11. close_ ..64

7. Variables ..65
8. Error Message Glossary ...73

Fatal Errors
Array Bounds ..73
Data Sequence, Syntax and File Construction ..74
Invalid Arguments...74

Warnings
Output Errors...76
Dictionary Checks...77

•
Appendices..79
A. Usage Restrictions and Policy...79

IUCr Policy ...80
B. Installation of CIFtbx ..81

Quick Installation..81
Detailed Installation Instructions ..81
Reporting Problems...89

C. CYCLOPS2...91
CYCLOPS2 overview...91
Error Message Glossary ..96

D. Syntax of a Star File..97
E. Internals and Programming Style ..99
•
Bibliography..107
Index..111

CIFtbx Primer Plus Page - v Release 2.6

Recent History and Acknowledgements

The CIF format was first adopted by the IUCr for journal submissions in 1990,
following the publication of the CIF core dictionary [Hall, Allen & Brown, 90]. Since
then there has been continual growth in the use of CIFs and in the development of
software for CIF generation and manipulation. In the past two years there have been
appreciable changes to the nature of CIF applications. These have been brought
about largely because of new data definitions in the macromolecular CIF dictionary
[Fitzgerald, Berman, Bourne, McMahon, Watenpaugh, Westbrook 96 and Bourne,
Berman, McMahon,. Watenpaugh, Westbrook, Fitzgerald 96]. This, and the powder
diffraction dictionary [Toby 97], were recently adopted by the IUCr (June 1997) as
standards for exchanging crystallographic data in these fields. The adoption of the
macromolecular dictionary, in particular, signals a watershed in the way that this
type of structural data will be handled in the future.

The most recent impetus for newer and more versatile versions of CIFtbx has been to
assist one of us (HJB) in using CIF data derived from Protein Data Bank files
[Bernstein, Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shimanouchi, Tasumi
77]. In the development of pdb2cif [Bernstein, Bernstein, Bourne 98], CIFtbx2 enabled
hundreds of CIF data names, embedded in existing software, to be mapped into the
DDL2 format, and for the existence of these items to be checked. CIFtbx2 has been
used in the recent release of the Xtal 3.5 System [Hall, King, Stewart 95], and in the
upgrade of CYCLOPS to CYCLOPS2 [Hall, Bernstein 96] (see Appendix C). It has
provided the platform for the creation of cif2cif, a program which checks and
reformats CIFs. CIFtbx2 was used for rapid adaptation of a command-line driven
lattice identification program to CIF [Bernstein, Andrews 96]

A primary objective with this toolbox has been to preserve the functionality of all
dictionaries written the core dictionary language DDL1 while providing a seamless
link to the richer DDL2 dictionaries. During this development we have leaned
heavily on the cooperation of our colleagues and collaborators. Many people have
contributed to the CIF development and although we are certain to not mention
many workers who have given valuable help at some stage, we must highlight the
special recent efforts of Helen Berman, Frances Bernstein, Phil Bourne, Paula
Fitzgerald, Brian McMahon and John Westbrook.

CIFtbx Primer Plus Page - vii Release 2.6

CHAPTER 1

What is a CIF?

1.1. Introduction

What is a CIF? To a crystallographer or a structural chemist, it is a simple and
flexible way of storing and exchanging numerical or text data electronically. The
letters C-I-F stand for Crystallographic Information File [Hall, Allen, Brown 91]. A
CIF is a text file that can be easily read by humans or computers because of its
very simple format. The rules governing this format are a subset of the general
syntax of the Self-Defining Text Archive and Retrieval (STAR) File [Hall, 91].

The CIF format is extremely flexible. Data items may be placed anywhere in a file
or a line, and in any order, provided that each data value is preceded by an
identifying label. Here is an extract from a CIF. The data values are in bold type
and the data identifiers (or names) are strings starting with an underscore.

_crystal_habit irregular_tetrahedron
_crystal_colour 'blue green'
_crystal_density 1.765(4)

loop_
 _crystal_face_index_h
 _crystal_face_index_k
 _crystal_face_index_l
 _crystal_face_dist_from_centre # in millimetres
 1 1 1 0.25
 -1 -1 1 0.27
 1 -1 -1 0.25
 -1 1 -1 0.29

_crystal_preparation
; The compound is crystallised from ethanol by slow
evaporation.
;

1.2. Basic syntax

The above example illustrates many of the basic principles of a CIF.

1. All contents are ascii text.

2. Each data value (shown above in bold) must be preceded by an
identifying data name.

3. A data name (or tag) is a character string starting with an underscore
character.

CIFtbx Primer Plus Page - 1 Release 2.6

4. Data values are of three basic types: number strings, character strings
and text strings.
• A number string may be in integer, decimal or scientific notation.

Numbers may have an error estimate appended within parentheses
(see _crystal_density above), if this is allowed by the data
definition (see DDL description below).

• A character string is a sequence of characters that is not a number;
not preceded by an underscore, and does not exceed one 80
characters in length. If the string contains blanks it must be
surrounded by quote characters (see _crystal_habit), in which
case the string must not exceed 78 characters in length.

• A text string may be one or more lines in length and must be
bounded by semicolons in column 1 preceding the first character,
and following the last character (see _crystal_preparation).
Unless the data definition imposes more restrictive rules, a text
string may be used any place where a character string might be
expected.

5. Lists of repeated data values are to be preceded by data names in
matching order. Such lists must be preceded by a loop_ command.

6. A data name and its value (i.e. tag/value pair, or tuple) are referred to as
a data item. Data items are grouped into data blocks. A data block is
preceded by a data_<name> command. The <name> string is referred
to as the data block name and this must be unique within a CIF.

7. Within a data block, each data name must be unique.

8. A CIF is restricted to 80-character lines.

9. The hash character '#' is used to start a comment on a line.

1.3. Case sensitivity.

Data names are not sensitive to the case of letters. For example, the strings

_ATOM_SITE_CARTN_X
_atom_site_cartn_x
_AtOm_SiTe_CaRtN_x

all represent the identical data name in a CIF. Strings that are not data names are
case sensitive in that the case of letters must always be preserved.

CIFtbx Primer Plus Page - 2 Release 2.6

1.4. Special characters

Certain characters in a CIF serve a special function when used in a particular
way. A brief summary of these is given below. For more detail see [Hall,
Spadaccini 95].

 _ the underscore (underline) is used to start a data name, or to end of a
command string, such as loop_. They terminate CIFtbx function and
variable names. They sometimes are used to replace blanks in strings so as
to avoid surrounding quotes.

<w> "white-space" characters such as blanks, tabs and end-of-lines are used to
delimit fields in a CIF, i.e. one or more white-space characters serve to
separate data names and values, provided the data names and values are
not inside a quoted string (as with the _crystal_colour value above) or
a text string (as with the _crystal_preparation value above).

 # the hash mark (sharp) disables syntactic processing of characters following
on a line, except within a quoted or text string. The hash is used for
comments in a CIF.

 ' the single quote (apostrophe) may be used to protect a character string,
but not a number or text string, from internal syntactic processing. This is
done by surrounding a character sequence with quote characters. More
precisely the string must start with the digraph <w>' and end with the
digraph '<w>. Within such a string characters such as _, <w>, # and " do
not have special properties. Note that the ' character may also be placed
within this string provided that it is not immediately trailed by a <w>
character. The character string must not span multiple lines.

 " the double quote serves the same function as '.

 ; the semicolon, if used as the first character in a line, is used to start and
finish a sequence of lines, referred to as a string of type text.. The sequence
newline-semicolon serves very much the same purpose as the single and
double quotes, but is the only way to provide multiple line text as a value.

 . the period character has a special meaning when used by itself as a data
value. It usually means "the default value".

 ? the question mark character has a special meaning when used by itself as a
data value. It usually means "value unknown".

 $ the dollar sign is normally NOT a special character in a CIF. However, if a
CIF contains save frames [Hall & Spadaccini, 95], the dollar sign is used at
the start of save frame names when referred to as data values. To avoid
confusion, do not use an unquoted dollar sign as a value in a CIF.

CIFtbx Primer Plus Page - 3 Release 2.6

1.5. Syntax control words

Special words in a CIF control and signal syntax changes. These words can be
easily recognised by a trailing underscore character.

data_ signals the start of a new data block. A name is appended to this string
(e.g. data_crystal_description). Each data block name within a
CIF must be unique.

loop_ signals the start of a repeated list of data items. loop_ is followed by
the data names of all items in the list. Then come the data values, in the
same order as the data names, and these are repeated until another
data name or control string is encountered.

global_ signals the start of a new global data block. This serves the same
function as data_ , except that it contains items are assumed to be
"global" rather than specific to a particular data block. Global data
blocks do not have block names.

stop_ signals the end of a nested list. Nested lists are not currently used in
CIF's but they are in a STAR File [Hall & Spadaccini, 95]. An example
of this is shown later.

save_ signals the start, and the end, of a save frame. Save frames are not used
in CIF's, but they are in DDL2 dictionaries. A save frame is used as a
"macro" within a data block to contain, one or more data items. A save
frame is "addressable" via a frame code, and each data name within a
frame must be unique. A data block may contain any number of save
frames. Because the identity of data items within a save frame is
"protected" from items outside this frame, the same data name may be
used in the data block or in other save frames. The save_ string at the
start a frame has an appended code that is unique within the data
block. This code, preceded by a dollar character, i.e. $<code>, may be
referred to as a data value, so as to "point to" a specific frame of data
items. The save_ string closing a frame does not have a code attached.

For a more formal description of STAR syntax, see Appendix D.

CIFtbx Primer Plus Page - 4 Release 2.6

1.6. File examples

Some data file examples will be now used to illustrate syntax requirements.

1.6.1 A typical structural CIF

Here is an abbreviated version of typical CIF.

data_xtest2

_chemical_name_systematic
 hexamethyl-4,8-dioxaundecanedioate)bis(pyridine)dirhodium
_chemical_formula_sum 'C40 H62 N2 O12 Rh2 '
_chemical_formula_moiety ?
_chemical_formula_weight 498.35
_symmetry_cell_setting triclinic
_symmetry_space_group_name_H-M 'P -1'

loop_
_symmetry_equiv_pos_as_xyz
'x,y,z' '-x,-y,-z'

_cell_length_a 8.586(8)
_cell_length_b 15.286(11)
_cell_length_c 15.606(8)
_cell_angle_alpha 94.57(4)
_cell_angle_beta 92.31(4)
_cell_angle_gamma 100.58(4)
_cell_formula_units_Z 4
_cell_volume 2004(3)

Note the following in this example.

• The alignment of character strings in this (and any other) CIF is largely a
matter of taste. Changing the white space between data names or values
does not affect the meaning of the data; nor does any reordering of the
items. The term "item" refers to a tag/value pair.

• The quotes are not needed for the _symmetry_equiv_pos_as_xyz values
because they contain no embedded blanks, however, their presense does
not alter the value. Because of embedded blanks in the formula, the quotes
bounding the _chemical_formula_sum string are required. Double
quotes would have worked as well.

• Because the value of _chemical_formula_moiety is unknown, its value
is shown as a question mark. This item (i.e. the tag and the value) could
have been omitted from the file, however, it is often convenient to retain
the data name of a missing value as a reminder that it needs to be added.
One of the most common errors in a CIF is the omission of a missing value
(i.e. using a blank field) as this violates the requirement to match tags to
values.

CIFtbx Primer Plus Page - 5 Release 2.6

1.6.2 A STAR File

Here is an example of a STAR File to illustrate its much more extensive syntax.
This file contains quantum chemical data on the water molecule. One can see
that a STAR file in most respects is identical to a CIF file.

data_water

_qchem_chemical_name_common water
_qchem_chemical_name_IUPAC 'oxygen dihydride'
_qchem_chemical_formula 'H2 O'

loop_
 _qchem_molecular_site_number
 _qchem_molecular_site_label
 _qchem_molecular_site_symbol
 _qchem_molecular_site_x
 _qchem_molecular_site_y
 _qchem_molecular_site_z
 _qchem_molecular_site_mass

 1 O1 O 0.00000 0.00000 0.00000 15.994915
 2 H1 H 0.00000 0.75753 0.58707 1.007825
 3 H2 H 0.00000 -0.75753 0.58707 1.007825

_qchem_molecular_mass_centre_x 0.0000000
_qchem_molecular_mass_centre_y 0.0000000
_qchem_molecular_mass_centre_z 0.0657023

loop_
 _qchem_basis_set_atom_name
 _qchem_basis_set_atom_symbol
 _qchem_basis_set_contraction_scheme
 _qchem_basis_set_funct_per_contraction
 loop_
 _qchem_basis_set_function_code
 _qchem_basis_set_function_count
 _qchem_basis_set_function_exponent
 _qchem_basis_set_function_coefficient

oxygen O (9,5,1)->[4,2,1] {6:1:1:1,4:1,1}

 s 1 7816.540000 0.002031
 s 1 1175.820000 0.015436
 s 1 273.188000 0.073771
#...data omitted for space
 d 7 0.900000 1.000000 stop_

hydrogen H (4,1)->[2,1] {3:1,1}

 s 1 19.240600 0.032828
 s 1 2.899200 0.231208
 s 1 0.653400 0.817238
 s 2 0.177600 1.000000
 p 3 1.000000 1.000000 stop_

CIFtbx Primer Plus Page - 6 Release 2.6

loop_
 _qchem_bond_site_label_1
 _qchem_bond_site_label_2
 _qchem_bond_distance_au
 _qchem_bond_distance
 O1 H1 1.811095991 0.958390452
 O1 H2 1.811095991 0.958390452

loop_
 _qchem_angle_site_label_1
 _qchem_angle_site_label_2
 _qchem_angle_site_label_3
 _qchem_angle
 H1 O1 H2 104.44991917

_qchem_molecule_number_atoms 3
_qchem_molecule_number_electrons 10
_qchem_molecule_number_contractions 13
_qchem_molecule_charge 0
_qchem_molecule_state_multiplicity 1
_qchem_molecule_occup_orb_doub 5
_qchem_molecule_occup_orb_sing_alpha 0
_qchem_molecule_occup_orb_sing_beta 0

_qchem_option_converge_criterion 1.0E-05
_qchem_option_variable_level_shift yes

_qchem_calc_energy_electronic -85.230179266
_qchem_calc_energy_nuclear 9.183706230
_qchem_calc_energy_total -76.046473036

Note the following difference between this STAR file and a CIF.

• The _qchem_basis_set_ items in this STAR file are in nested loop. The
_qchem_basis_set_function_ items are in a level 2 loop. Note that
following the last set (or packet) of data values for these items there is a
stop_ signal. This causes the nesting to revert to level 1.

1.7 Data definitions

CIF data items used in global data exchange applications, such as in archiving or
publication, are usually defined in an electronic dictionary that has been formally
approved by the IUCr. In that way, those that generate CIF data have a common
understanding of what the data means with those that subsequently read that
data. The definition of data items has become quite rigorous as a consequence of
this requirement and involves special definition protocols that are incorporated
in a dictionary definition language (DDL).

Each data definition needs to specify the function of an item, and list its
particular characteristics or attributes. For instance, the definition needs to
specify if an item is a number or a character string. Although very few users of
CIF data need to understand how dictionaries and the individual definitions are
constructed, a programmer writing CIF applications will benefit greatly by

CIFtbx Primer Plus Page - 7 Release 2.6

knowing about the two types of DDL currently in use, appreciating the types of
information contained within the DDL definitions, and understanding how it can
be employed to validate data.

The format of all CIF electronic dictionaries conform to the STAR syntax, and
may also be parsed with CIFtbx tools. In fact, the toolbox provides a specific
function to read and cross check attributes from dictionaries.

Existing dictionaries are written using two different DDL's. DDL1 has been used
to construct the CIF Core, Powder and several other dictionaries. A more recent
dictionary language, DDL2, is used to specify the macromolecular dictionary
mmCIF [Fitzgerald, Berman, Bourne, McMahon, Watenpaugh, Westbrook 96].

1.7.1 DDL1 definition examples

1.7.1.1 DDL1 example 1

Here is DDL1 definition of the data items _atom_site_fract_x,
_atom_site_fract_y, and_atom_site_fract_z from the Core dictionary.

data_atom_site_fract_
 loop_ _name '_atom_site_fract_x'
 '_atom_site_fract_y'
 '_atom_site_fract_z'
 _category atom_site
 _type numb
 _type_conditions esd
 _list yes
 _list_reference '_atom_site_label'
 _enumeration_default 0.0
 _definition
; Atom site coordinates as fractions of the _cell_length_
 values.
;

The precise meanings of the different DDL1 attributes such as _name,
_category, etc. are given in [Hall, Cook 95] and [McMahon 95].

Note the following in this definition.

• when data items form an irreducible set, such as with the fractional
coordinates x, y, and z, or the diffraction indices h, k, and l, they are
defined in the same DDL1 data block. In DDL2 each data item is defined
separately.

• the _list attribute tells us that the fractional coordinates must be present
in a looped list of category atom_site.

• the _list_reference attribute specifies that the data item
_atom_site_label must be present in the same looped list as the
fractional coordinates for the list of category atom_site items to be valid.

CIFtbx Primer Plus Page - 8 Release 2.6

• the _type_conditions attribute places the condition esd on the _type
value of numb. This means that fractional coordinate numbers may have
the estimated standard deviation (i.e. standard uncertainty) values
appended within parentheses.

• the _enumeration_default attribute defines the value that a fractional
coordinate is assumed to have, if it is missing from a CIF.

1.7.1.2 DDL1 example 2

Here is the DDL1 definition of the data item _atom_site_label. This is the
item referred to above as the _list_reference data that must be present in a
list of items of category atom_site, in order that the CIF be valid.

data_atom_site_label
 _name '_atom_site_label'
 _category atom_site
 _type char
 _list yes
 _list_mandatory yes
 loop_ _list_link_child '_atom_site_aniso_label'
 '_geom_angle_atom_site_label_1'
 '_geom_angle_atom_site_label_2'
 '_geom_angle_atom_site_label_3'
 '_geom_bond_atom_site_label_1'
 '_geom_bond_atom_site_label_2'
 loop_ _example C12 Ca3g28 Fe3+17 H*251
 boron2a C_a_phe_83_a_0 Zn_Zn_301_A_0
 _definition
; The _atom_site_label is a unique identifier for a
 particular site in the crystal.
;

Note the following in this definition.

• the attribute _list_mandatory with a value of yes signals that this item
must be present in any list of category atom_site.

• the _list_link_child attributes specify data items that are 'child'
dependencies of _atom_site_label. This means that this item must be
present in the CIF if any of the dependent items is present.

• the _list_reference attribute specifies that the data item
_atom_site_label.

1.7.1.3 DDL1 example 3

Here is a more complicated DDL1 definition for the six anisotropic atomic
displacement parameters Uij.

CIFtbx Primer Plus Page - 9 Release 2.6

data_atom_site_aniso_U_
 loop_ _name '_atom_site_aniso_U_11'
 '_atom_site_aniso_U_12'
 '_atom_site_aniso_U_13'
 '_atom_site_aniso_U_22'
 '_atom_site_aniso_U_23'
 '_atom_site_aniso_U_33'
 _category atom_site
 _type numb
 _type_conditions esd
 _list yes
 _list_reference '_atom_site_aniso_label'
 _related_item '_atom_site_aniso_B_'
 _related_function conversion
 _units A^2^
 _units_detail 'angstroms squared'
 _definition
; These are the standard anisotropic atomic displacement
 components in angstroms squared which appear in the
 structure factor term:

 T = exp{-2pi^2^ sum~i~ [sum~j~ (U^ij^ h~i~ h~j~ a*~i~
 a*~j~)] }

 h = the Miller indices
 a* = the reciprocal-space cell lengths

 The unique elements of the real symmetric matrix are
 entered by row.
;

Note the following aspects of this definition.

• the _related_item attribute identifies items that are related to the
defined one. The nature of this relationship is specified with
_related_function. In this case the value is conversion, which means
that the Uij can be derived directly from the Bij.

• the _units attributes specify the units or dimensions of the Uij in
ångstroms squared.

1.7.2 DDL2 definition examples

The definitions shown above are from the CIF Core dictionary and illustrate how
the DDL1 attributes are used to define data items. The DDL1 approach makes
minimum use of the 'category' of data items, such as atom_site. In a sense this
is inefficient because data attributes such as _list, _list_reference,
_list_link_child, _list_link_parent, refer to properties of the class or
category rather than to individual items. The DDL2 approach [Westbrook, Hall
96] uses a more hierarchical approach to data classes in which data items of a
particular category are organized into a single table. The DDL2 also provides for
explicit sub-categories in which data items are identified by function, e.g. 'matrix'.
Although this approach is less intuitive to the casual user, it has proven to be
advantageous in defining complex data relationships, such as those in the

CIFtbx Primer Plus Page - 10 Release 2.6

macromolecular dictionary, and is therefore expected to be of increasing
importance in the future as cross-discipline data bases develop.

1.7.2.1 DDL2 example 1

To illustrate the differences between the dictionary approaches, we shall now
look at the _atom_site definitions in DDL2.

save__atom_site.fract_x

 _item_description.description
; The x coordinate of the atom site position specified as a
 fraction of _cell.length_a.
;
 _item.name '_atom_site.fract_x'
 _item.category_id atom_site
 _item.mandatory_code no
 _item_aliases.alias_name '_atom_site_fract_x'
 _item_aliases.dictionary cif_core.dic
 _item_aliases.version 2.0.1
 loop_
 _item_dependent.dependent_name
 '_atom_site.fract_y'
 '_atom_site.fract_z'
 _item_related.related_name '_atom_site.fract_x_esd'
 _item_related.function_code associated_esd
 _item_sub_category.id fractional_coordinate
 _item_type.code float
 _item_type_conditions.code esd
 save_

Note the following aspects in this definition.

• DDL2 definitions are enclosed in a save frame, not a data block.

• DDL2 data names contain a dot '.' character that separates the category
(starting the name) from the identity (ending the name).

• in DDL2 definitions each data item, independent of its irreducible
relationship to other data items, is defined separately.

• DDL2 data names are equivalenced to other identical data items, including
the DDL1 defined names, with the attributes
_item_aliases.alias_name values.

• in DDL2 the _item_type.code attribute is identical to the DDL1 _type
attribute, except that it has a more detailed enumeration e.g. number has
been expanded to integer, float, etc.

1.7.2.2 DDL2 example 2

Here is another DDL2 definition to emphasise the differences in definition
approach.

CIFtbx Primer Plus Page - 11 Release 2.6

save__atom_site.aniso_U[1][3]_esd

 _item_description.description
; The estimated standard deviation of
 _atom_site.aniso_U[1][3].
;
 _item.name '_atom_site.aniso_U[1][3]_esd'
 _item.category_id atom_site
 _item.mandatory_code no
 _item_default.value 0.0
 loop_
 _item_related.related_name
 _item_related.function_code '_atom_site.aniso_U[1][3]'
 associated_value
 '_atom_site.aniso_B[1][3]_esd'
 conversion_constant
 '_atom_site_anisotrop.B[1][3]_esd'
 conversion_constant
 '_atom_site.aniso_B[1][3]_esd'
 alternate_exclusive
 '_atom_site_anisotrop.B[1][3]_esd'
 alternate_exclusive
 '_atom_site_anisotrop.U[1][3]_esd'
 alternate_exclusive
 _item_sub_category.id matrix
 _item_type.code float
 _item_units.code angstroms_squared
 save_

Note the following in this definition.

• DDL2 defines the esd (or su) of U13 as a separate data item, whereas in
DDL1 the su is assumed to be appended to the value.

• an additional classification attribute _item_sub_category.id is defined
in DDL2.

• in DDL2 definitions each data item, independent of its irreducible
relationship to other data items, is defined separately.

1.7.2.3 DDL2 example 3

Finally here is how the properties of the category atom_site are defined in
DDL2.

CIFtbx Primer Plus Page - 12 Release 2.6

save_ATOM_SITE
 _category.description
; Data items in the ATOM_SITE category record details about
 the atom sites in a macromolecular crystal structure,
 such as the positional coordinates, atomic displacement
 parameters, magnetic moments and directions, and so on.

 The data items for describing anisotropic temperature or
 thermal displacement factors are only used if the
 corresponding items are not given in the
 ATOM_SITE_ANISOTROP category.
;
 _category.id atom_site
 _category.mandatory_code no
 _category_key.name '_atom_site.id'
 loop_
 _category_group.id 'inclusive_group'
 'atom_group'
 save_

Note the following aspects in this category definition.

• in DDL2 the attribute _category_key.name, which is equivalent to the
DDL1 _list_reference, is defined only once, whereas in DDL1 must be
declared in the definition of each data item.

• the category attributes are identified by the name structure _category_ as
opposed to the _item_ prefix used to define data items. It is important to
emphasise that atom_site is NOT a data item and will not appear in a
CIF.

CIFtbx Primer Plus Page - 13 Release 2.6

1.8 Handling DDL1 and DDL2 name structures

The different naming structures in the two dictionary languages, DDL1 and
DDL2, appears to complicate the use of CIFs. This is avoided because the CIFtbx
toolbox handles these naming convention transparently and interchangeably
provided there is access to the relevant dictionaries.

We shall now look quickly at some data items expressed in both conventions.
Here is an extract of a CIF containing core data items.

loop_
 _atom_site_label
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_U_iso_or_equiv
 _atom_site_thermal_displace_type
 _atom_site_calc_flag
 _atom_site_calc_attached_atom
 O1 .4154(4) .5699(1) .3026(0) .060(1) Uani ? ?
 C2 .5630(5) .5087(2) .3246(1) .060(2) Uani ? ?
 C3 .5350(5) .4920(2) .3997(1) .048(1) Uani ? ?
 N4 .3570(3) .5558(1) .4167(0) .039(1) Uani ? ?
 C5 .3000(5) .6122(2) .3581(1) .045(1) Uani ? ?

loop_
 _atom_site_aniso_label
 _atom_site_aniso_U_11
 _atom_site_aniso_U_22
 _atom_site_aniso_U_33
 _atom_site_aniso_U_12
 _atom_site_aniso_U_13
 _atom_site_aniso_U_23
 _atom_site_aniso_type_symbol
 O1 .071(1) .076(1) .0342(9) .008(1) .0051(9) -.0030(9) O
 C2 .060(2) .072(2) .047(1) .002(2) .013(1) -.009(1) C
 C3 .038(1) .060(2) .044(1) .007(1) .001(1) -.005(1) C
 N4 .037(1) .048(1) .0325(9) .0025(9) .0011(9) -.0011(9) N
 C5 .043(1) .060(1) .032(1) .001(1) -.001(1) .001(1) C

In this CIF, the anisotropic atomic displacement parameters have been looped in
a separate list from the atomic coordinates. The each row in the second list is
linked to a row in the list of atomic coordinates by the value of
_atom_site_aniso_label that matches the value of _atom_site_label in
the associated row of the list of atomic coordinates. Though it is customary to
align the ordering of the two lists, CIF does not require them to be in the same
order, only that the labels can be matched. Alternatively, the two lists could have
been merged into one, using the same tags.

CIFtbx Primer Plus Page - 14 Release 2.6

In the DDL2-based mmCIF dictionary there are two alternate sets of names for
presentation of anisotropic atomic displacement parameters, one set in the
atom_site category, and another set in a distinct atom_site_anisotrop
subcategory. In a CIF one set of names can be used but not both. If the names
from the parent category are used they must be combined with these items. An
atomic coordinate list with anisotropic displacement parameters merged into the
same list in mmCIF would look like this.

 loop_
_atom_site.label_seq_id
_atom_site.auth_asym_id
_atom_site.group_PDB
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.auth_seq_id
_atom_site.label_alt_id
_atom_site.cartn_x
_atom_site.cartn_y
_atom_site.cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.footnote_id
_atom_site.label_entity_id
_atom_site.id
_atom_site.aniso_U[1][1]
_atom_site.aniso_U[1][2]
_atom_site.aniso_U[1][3]
_atom_site.aniso_U[2][2]
_atom_site.aniso_U[2][3]
_atom_site.aniso_U[3][3]

1 . ATOM N N GLU * 1 A 4.127 26.179 -7.903 0.49 57.53 . 1 1
 0.9336 0.0004 0.2737 0.7394 0.2771 0.4591
1 . ATOM N N GLU * 1 B 3.535 25.488 -12.889 0.51 54.52 . 1 2
 0.8406 -0.0887 0.3093 0.5015 0.0161 0.6783
1 . ATOM C CA GLU * 1 A 5.490 26.607 -8.207 0.49 52.50 . 1 3
 0.9283 -0.0256 0.2331 0.5563 0.1241 0.4611
1 . ATOM C CA GLU * 1 B 2.754 26.395 -12.051 0.51 51.27 . 1 4
 0.7663 -0.0653 0.2258 0.5124 0.0184 0.6212
1 . ATOM C C GLU * 1 A 5.550 27.734 -9.233 0.49 47.55 . 1 5
 0.8593 -0.088 0.182 0.4752 0.0625 0.4275

The same information presented as two lists in mmCIF would use different tags,
very similar to those used in DDL1.

CIFtbx Primer Plus Page - 15 Release 2.6

 loop_
_atom_site.label_seq_id
_atom_site.auth_asym_id
_atom_site.group_PDB
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.auth_seq_id
_atom_site.label_alt_id
_atom_site.cartn_x
_atom_site.cartn_y
_atom_site.cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.footnote_id
_atom_site.label_entity_id
_atom_site.id
_atom_site.aniso_U[1][1]
_atom_site.aniso_U[1][2]
_atom_site.aniso_U[1][3]
_atom_site.aniso_U[2][2]
_atom_site.aniso_U[2][3]
_atom_site.aniso_U[3][3]

1 . ATOM N N GLU * 1 A 4.127 26.179 -7.903 0.49 57.53 . 1 1
1 . ATOM N N GLU * 1 B 3.535 25.488 -12.889 0.51 54.52 . 1 2
1 . ATOM C CA GLU * 1 A 5.490 26.607 -8.207 0.49 52.50 . 1 3
1 . ATOM C CA GLU * 1 B 2.754 26.395 -12.051 0.51 51.27 . 1 4
1 . ATOM C C GLU * 1 A 5.550 27.734 -9.233 0.49 47.55 . 1 5

_atom_site_aniso.id
_atom_site_aniso.U[1][1]
_atom_site_aniso.U[1][2]
_atom_site_aniso.U[1][3]
_atom_site_aniso.U[2][2]
_atom_site_aniso.U[2][3]
_atom_site_aniso.U[3][3]

1 0.9336 0.0004 0.2737 0.7394 0.2771 0.4591
2 0.8406 -0.0887 0.3093 0.5015 0.0161 0.6783
3 0.9283 -0.0256 0.2331 0.5563 0.1241 0.4611
4 0.7663 -0.0653 0.2258 0.5124 0.0184 0.6212
5 0.8593 -0.088 0.182 0.4752 0.0625 0.4275

The mmCIF the _atom_site_aniso.id tag fills the role of the small molecular
core CIF tag _atom_site_aniso_label for which it is an alias, and the mmCIF
tag _atom_site.id tag fills the role of the small molecule core CIF tag
_atom_site_label for which it is an alias, providing the same approach to
linking the list of anisotropic atomic displacement parameters to the list of atomic
coordinates.

CIFtbx Primer Plus Page - 16 Release 2.6

CHAPTER 2

Overview of the Tool Box

2.1. Introduction

The CIFtbx library is made up of Fortran functions, subroutines, monitor
variables and control variables . It is used to develop software to read and/or
write CIF data. In addition, these software "tools" automatically test the validity
of incoming CIF data, and ensure the correct deposition of outgoing data. The
self-checking aspects of these tools are important for ensuring that the data
structure of the CIF is correct, and, when used in association with the DDL
dictionaries, that the individual items and lists are conformant to the data
definitions.

This chapter provides an overview of the available CIFtbx tools. The next chapter
shows how these tools are applied to different data manipulation tasks, and later
chapters provide the reference manual details on how the various options for
tools are invoked and interpreted.

CIFtbx facilities are of four types:

1. commands to initialise later handling,

2. commands to read CIF data,

3. commands to write CIF data,

4. variables for monitor and control signals.

CIFtbx commands are Fortran function or subroutine calls which are invoked in
the standard way. For example, to open the dictionary file "core.dic" one
would simply enter the logical function dict_

FN = dict_('core.dic','valid')

FN is a local LOGICAL variable. The string 'core.dic' is the local file
identifier for the dictionary. The string 'valid' informs the command of the
checking that should be done against the data definitions in this dictionary. If
dict_ opens the file "core.dic" correctly the value of FN is returned as
.true.; otherwise the function is returned as .false.

If the command is a subroutine, such as purge_, which is used to clear the
internal data tables, it is invoked as

call purge_

Note that all but two of the commands are functions.

CIFtbx Primer Plus Page - 17 Release 2.6

The arguments to the commands are minimal. Much of the work of the library is
done by reading and setting variables held in common blocks. Both the common
block declarations and the type declarations for all the commands are provided
in the file ciftbx.cmn, which must be 'included' in each program, function or
subroutine that uses CIFtbx.

The flexibility of CIF presents some challenges to the writer of applications that
use CIF. The information in a CIF may be presented in any order, with the data
names presented in upper or lower case and with whatever spacing between
items pleases one's taste. You may take a CIF, pick up, say, the cell parameters
from the front of the file, place them at the end, after all the atomic coordinates,
change the "_cell..." in all the data names to "_Cell..." and introduce a
blank line between each data name and its value and call the file the same CIF.
CIFtbx provides the application writer with the tools to process both the original
file and the modified file as the same CIF. When the application needs the cell
parameters, it asks for them by name. For the advanced application writer,
CIFtbx also has the option of simply asking for the next data item, whatever the
name of that data item might be, allowing the application to go beyond the
position-independent context of CIF and to be sensitive to the position of items
within the CIF.

2.2. Initialisation Commands

Initialisation commands are applied before any other commands. There are only
two tools in this category.

logical function init_ (devcif, devout, devdir, deverr)
integer devcif, devout, devdir, deverr

logical function dict_ (fname, checks)
character fname*(*), checks*(*)

init_ Is an optional command that specifies the device number assignments
for the input CIF, devcif, the output CIF, devout, an internal
scratch file, devdir, and the file containing error messages, deverr.
The internal scratch file, devdir, is used to hold a copy of the input
CIF as a direct access file (i.e. for random access to parts of the CIF).
init_ is a logical function that is always returned with a value of
.true. The default device numbers for these files are 1, 2, 3 and 6.

dict_ Is an optional command for opening a dictionary, fname, and initiating
various optional data checks, checks. The choices of checks to
perform are given by a string of blank-separated 5-character 'check
codes', such as 'valid' or 'dtype' to turn on checking for the
validity of tags or types of values. dict_ is a logical function which is
returned as .true. if the name dictionary was opened and if the check
codes are recognisable.

CIFtbx Primer Plus Page - 18 Release 2.6

2.3. Read Commands

These commands are used to read data from an existing CIF. Since CIF data is
order-independent, most applications would work from a known list of data
names (tags) and to extract the desired values from the CIF in the order specified.
However, some applications need to browse a CIF in the order of presentation.
In CIFtbx a blank name has the meaning of the next name in the file.

logical function ocif_ (fname)
character fname*(*)

logical function data_ (name)
character name*(*)

logical function bkmrk_ (mark)
integer mark

logical function find_ (name, type, strg)
character name*(*), type*(*), strg*(*)

logical function test_ (name)
character name*(*)

logical function name_ (name)
character name*(*)

logical function numb_ (name, numb, sdev)
character name*(*)
real numb, sdev

logical function numd_ (name, numb, sdev)
character name*(*)
double precision numb, sdev

logical function char_ (name, strg)
character name*(*), strg*(*)

logical function cmnt_ (strg)
character strg*(*)

subroutine purge_

ocif_ Requests the named CIF, fname, to be opened. The logical function is
returned as .true. if the CIF can be opened.

data_ Specifies the data block, name, containing the data to be read from the
CIF. The logical function is returned as .true. if the data block is
found.

bkmrk_ A bookmark command saves or restores the current position in the CIF
so that data can be accessed non-sequentially, if need be. The logical
function is returned as .true. if there is space to store the current
position, or if the restored bookmark number is valid.

find_ Finds the requested item in the current data block. The logical function
is returned as .true. if the item is found.

test_ Provides the data attributes of a data item in the current data block.
The logical function is returned as .true. if the item is found. The
data attributes are returned in the common block variables list_,
type_, dictype_, diccat_ and dicname_.

CIFtbx Primer Plus Page - 19 Release 2.6

name_ Identifies the next data name in the current data block. The logical
function is returned as .true. if another data name exists in the data
block and .false. if the end of the data block is reached. The name is
returned in the function argument, name.

numb_ Returns the number, numb, and its standard deviation, sdev (if
appended), of a named data item, name. The logical function is
returned as .true. if the item is present and is a number. If the item
is either absent or cannot be recognized as a valid number, the function
is returned as .false. and the original numeric argument values are
not changed.

numd_ Returns the number, numb, and its standard deviation, sdev (if
appended), as double precision variables of a named data item, name.
The logical function is returned as .true. if the item is present and is
a number. If the item is either absent or cannot be recognized as a
valid number, the function is returned as .false. and the original
numeric argument values are not changed.

char_ Returns character or text strings, strg, of the named data item, name.
The logical function is returned as .true. if the item is present. If text
lines are being read, this function is called repeatedly until the logical
variable text_ is .false.

cmnt_ Returns the next comment, strg, in the current data block. The
logical function returned as .true. if a comment is present. The
initial comment character "#" is not included in the returned string and
a completely blank line is treated as a comment.

purge_ Closes all attached data files, and clears all tables and pointers. This is
a subroutine call.

2.4. Write Commands

The following commands are available for writing data to a new CIF.

logical function pfile_ (fname)
character fname*(*)

logical function pdata_ (name)
 character name*(*)

logical function pnumb_ (name, numb, sdev)
character name*(*)
real numb, sdev

logical function pnumd_ (name, numb, sdev)
character name*(*)
double precision numb, sdev

logical function pchar_ (name, string)
character name*(*), string*(*)

logical function pcmnt_ (string)
character string*(*)

CIFtbx Primer Plus Page - 20 Release 2.6

logical function ptext_ (name, string)
character name*(*), string*(*)

logical function ploop_ (name)
character name*(*)

logical function prefx_ (strg, lstrg)
character strg*(*)
integer lstrg

subroutine close_

pfile_ Creates a new file with the specified file name, fname. The logical
function is returned as .true. if the file is opened. The value will be
.false. if the file already exists.

pdata_ Puts "data_name", name, into the output CIF. The logical function is
returned as .true. if the block is created. The value will be
.false. if the block name already exists. This command inserts
"save_name" instead of a data block if the variable saveo_ is set to
.true. If the prior block was a save-frame, the necessary terminal
'save_' is written for that block before the new block is started.

ploop_ Puts the specified data name, name, into the output CIF. On the first
invocation of this command for a given loop a "loop_" string is
placed before the data name. The logical function is returned as
.true. the name passes any requested dictionary validation checks.
Once a series of data names for a loop_ header has been declared by
calls to this function, all calls to pchar_, ptext_, pnumb_ or
pnumd_ for the associated data values must be made with data
names, the first character of which is blank, or the loop_ will be
terminated.

pchar_ Puts the specified data name, name, and character string, string,
into the output CIF. If the data name is blank, only the character
string is put. The logical function is returned as .true. if the data
name passes any requested dictionary validation checks.

pnumb_ Puts the specified data name, name, single precision number, numb,
and an appended esd, sdev, into the output CIF. The logical function
is returned as .true. if the data name passes any requested
dictionary validation checks.

pnumd_ Puts the specified data name, name, double precision number, numb,
and an appended esd, sdev, into the output CIF. The logical function
is returned as .true. if the data name passes any requested
dictionary validation checks.

ptext_ Puts the specified data name, name, and text string, string, into the
output CIF. The data name will only be inserted on the first
invocation of a sequence. The logical function is returned as .true.
if the data name passes any requested dictionary validation checks.
This command must be invoked repeatedly until the text is finished.
The terminal ";" is placed in the output CIF when the next call to

CIFtbx Primer Plus Page - 21 Release 2.6

pchar_, pnumb_ or pnumd_ is made or if a call is made to ptext_
for a different data name.

pcmnt_ Puts the specified comment string, string, into the output CIF. The
logical function is always returned as .true. The comment
character "#" should not be included in the string. A blank comment
is presented as a blank line without the leading "#". The string
char(0)//char(0) can be used to produce an empty comment with the
leading "#".

prefx_ Prefixes the specified string, strg, of length, lstrg, to subsequent
lines of the output CIF. The total line length is still limited to the
value given by the variable line_ (default 80 characters). This
function is useful when embedding a CIF another text document,
such as a PDB REMARK. The logical function is always returned as
.true.

close_ Closes the output CIF only. This command MUST be used if pfile_
is used. This a subroutine call.

2.5. Variables

The CIFtbx library also contains a large number of variables declared in the
common blocks in the file ciftbx.cmn that may be used to monitor details of
reading and writing processes and to control various functions. Note that for all
but special applications only the basic variables list_, loop_, strg_, text_,
and type_ are usually used. These variables supplement the argument lists of
the various commands, providing essential status information. See Chapter 7 for
more information.

2.5.1. General Monitor Variables

These variables are returned by CIFtbx tools and provide information about the
general status of processing.

file_ Character string containing the filename of the current input file.

longf_ Integer variable containing the length of the filename in file_.

precn_ Integer variable containing the line number (starting from 1) of the last
line written to the output CIF.

recn_ Integer variable containing the line number (starting from 1) of the last
line read from the input CIF.

tbxver_ Character*32 variable: which is the CIFtbx version and date in the form
'CIFtbx version N.N.N DD MMM YYYY '1

1The formatof this string changed in version 2.6 to become year-2000 compliant. In prior versions this
string was 'CIFTBX version N.N.N, DD MMM YY'.

CIFtbx Primer Plus Page - 22 Release 2.6

2.5.2. General Control Variables

These variables are specified to control CIFtbx commands.

alias_ Logical variable to control the use of data name aliases for input items.
If set .true. aliases from the input dictionary may be used (see 2.6
below). The default is .true.

append_ Logical variable: to control reuse of the direct access file. If set .true.
will cause each call to ocif_ to append the information found to the
current CIF. The default is .false.

line_ Integer variable to set the input/output line limit for processing a CIF.
The default value is 80 characters. This limit counts the visible
printable characters of the line, not the system-dependent line
terminators.

nblank_ Logical variable controls the treatment of input blank strings. If set
.true. char_ or test_ will return the type as null rather than char
when encountering a quoted blank.

recbeg_ Integer variable that gives the record number of the first record to be
used. May be changed by the user to restrict access to a CIF.

regend_ Integer variable that gives the record number of the last record to be
used. May be changed by the user to restrict access to a CIF.

tabx_ Logical variable is set to .true. for tab-stops to be expanded to blanks
during the reading of a CIF. The default is .true.

2.5.3. Input Monitor Variables

These variables are returned by CIFtbx tools and are used to decide on subsequent
actions in the program. Note that the lengths of the character strings that hold
data names and block names are controlled by the parameter NUMCHAR in the
common block declarations.

bloc_ Character string containing the current data block name.

decp_ Logical variable is .true. if there is a decimal point is present in the
input numeric value.

diccat_ Character string containing the category name specified in the attached
dictionaries.

dicname_
Character string containing the root alias data name (see 2.6, below)
specified in the attached dictionaries, or, after a call to dict_, the
name of the dictionary.

dictype_
Character string containing the data type code specified in the attached
dictionaries. These types may be more specific (e.g. 'float' or
'int') than the types given by the variable type_ (e.g. 'numb')

CIFtbx Primer Plus Page - 23 Release 2.6

dicver_ Character string containing the version of a dictionary after a call to
dict_.

esddig_ Integer variable containing number of esd digits in the last number
read from a CIF. Will be zero if no esd was given.

glob_ Logical variable: is .true. if the current data block is actually a
global block. The application is responsible for managing the
relationship of global data to other data blocks.

list_ Integer variable containing the sequence number of the current looped
list. This value may be used by the application to identify variables
that are in different lists or which are not in a list (a zero value).

loop_ Logical variable is .true. if another loop packet is present in the
current looped list.

long_ Integer variable containing the length of the data string in strg_.

lzero_ Logical variable is .true. if the input numeric value is of the form
[sign]0.nnnn rather than [sign].nnnn.

posdec_ Integer variable containing the column number (position along the line,
counting from 1 at the left) of the decimal point for the last number
read.

posend_ Integer variable containing the column number (position along the
line, counting from 1 at the left) of the last character for the last string
or number read.

posnam_ Integer variable containing the starting column (position along the line,
counting from 1 at the left) of the last name or comment read.

posval_ Integer variable containing the starting column (position along the
line, counting from 1 at the left) of the last data value read.

uote_ Character variable giving the quotation symbol found delimiting the
last string read.

save_ Logical variable is .true. if the current data block is actually a save-
frame, otherwise .false.

strg_ Character variable containing the data name or string representing the
data value last retrieved.

tagname_
Character variable containing the data name of the current data item as
it was found in the CIF. May differ from dicname_ because of
aliasing.

text_ Logical variable is .true. if another text line is present in the current
input text block.

type_ Character variable containing the data type code of the current input
data item. This will be one of the 4-character strings, 'null' (for
missing data, the period or the question mark), 'numb' (for numeric

CIFtbx Primer Plus Page - 24 Release 2.6

data), 'char'(for most character data) or 'text' (for semi-colon
delimited multi-line character data)2.

2.5.2. Output Control Variables

These variables are specified to control the processing CIFtbx commands that
write CIFs.

aliaso_ Logical variable to control the use of data name aliases for output
items. If set .true. preferred synonyms from the input dictionary
may be output (see 2.6 below). The default is .false.

align_ Logical variable to control the column alignment of data values in
loop_ lists output to a CIF. The default is .true.

esdlim_ Integer variable to set the upper limit of appended esd integers output
by pnumb_. The default value is 19, which limits esd's to the range 2-
19.

globo_ Logical variable which if set .true. will cause the output data block
from pdata_ to be written as a global block.

nblanko_ Logical variable controls the treatment of output blank strings. If set
.true. output quoted blank strings will be converted to an unquoted
period (i.e. to a data item of type null)3.

pdecp_ Logical variable controls the treatment of output decimal numbers. If
set .true. a decimal point will be inserted into numbers output by
pnumb_ or pnumbd_. If set .false. a decimal point will be output
only when needed. The default is .false.

pesddig_ Integer variable to set non-zero, and esdlim_ is negative, controls the
number of digits for esd's produced by pnumb_ and pnumd_

plzero_ Logical variable controls the treatment of leading zeros in output
decimal numbers. If set .true. a zero will be inserted before a
leading decimal point. The default is .false.

pposdec_ Integer variable to set the column number (position along the line,
counting from 1 at the left) of the decimal point for the next number
to be output.

pposend_ Integer variable to set the position of the ending column for the next
number or character string to be output. Used to pad with zeros or
blanks.

pposnam_ Integer variable to set the starting column of the next name or comment
to be output.

2For most purposes the type text is a sub-type of the type char, and not a distinct data type.
CIFtbx permits multi-line text fields to be used whenever character strings are expected.
3CIFtbx treats an unquoted period or question mark as being of type 'null'.

CIFtbx Primer Plus Page - 25 Release 2.6

pposval_ Integer variable to set the starting column of the next data value to be
output.

pquote_ Character variable containing the quotation symbol to be used for the
next string written.

saveo_ Logical variable is set .true. for pdata_ to output a save-frame,
otherwise a data block is output.

ptabx_ Logical variable is set to .true. for tab-stops to be expanded to blanks
during the creation of a CIF. The default is .true.

tabl_ Logical variable is set to .true. for tab-stops to be used in the
alignment of output data. The default is .true.

2.6. Name Aliases

CIF dictionaries written in DDL2 permit data names to be aliased or
equivalenced to other data names. This serves two purposes. First, it allows for
the different data name structures used between DDL1 and DDL2 dictionaries
(this was discussed in Chapter 1), and, second, it links equivalent data names
within the DDL2 dictionary. Aliasing also allows the use of synonyms
appropriate to the application.

CIFtbx is capable of handling aliased data names transparently so that both the
input CIF and the application software may use any of the equivalent aliased
names. In addition, an output CIF may be written with the data names specified
in the CIFtbx functions, or with names that have been automatically converted to
preferred dictionary names. If more than one dictionary is loaded, the first
aliases normally have priority. We call the preferred dictionary name the "root
alias".

The default behaviour of CIFtbx is to accept all combinations of aliases, and to
produce output CIFs with the exact names specified in the user calls. The
interpretation of aliased data names is modified by setting the logical variables
alias_ and aliaso_. When alias_ is set .false. the automatic recognition
and translation of aliases stops. When aliaso_ is set .true., the automatic
conversion of user-supplied names to dictionary-preferred alias names in writing
data to output CIFs is enabled. The preferred alias name is stored in the variable
dicname_ following any invocation of a getting function, such as numb_ or
test_. If alias_ is set .false., dicname_ will agree with the called name.
The variable tagname_ is always set to the actual name used in an input CIF.

For example, the data name _atom_site_aniso_U_11 from the core dictionary
is the alias of _atom_site_anisotrop.u[1][1] in the mmCIF dictionary. In
the following application of CIFtbx function test_ the specified data name
_atom_site_aniso_U_11 is used to inquire as to the names used in an input
CIF.

CIFtbx Primer Plus Page - 26 Release 2.6

read(8,'(a)',end=400) name
f1 = test_(name)
write(6,'(2(3x,a32)') name,dicname_
name=dicname_
f1 = test_(name)
write(6,'(2(3x,a32)') name,tagname_

Invocation of this code results in the following printout.

_atom_site_aniso_U_11 _atom_site_anisotrop.u[1][1]
_atom_site_anisotrop.u[1][1] _atom_site_aniso_U_11

CIFtbx Primer Plus Page - 27 Release 2.6

CHAPTER 3

How to Use the Tool Box

3.1. Introduction

The CIFtbx tool box is supplied as a suite of Fortran source files and test files. The
installation instructions for CIFtbx are given in Appendix B.

In this chapter we will provide an overview on how to use the CIFtbx tools. This
will be done using a series of simple application examples. These examples are
similar to that supplied with the test software.

The main source files4 of CIFtbx are:

ciftbx.f
ciftbx.sys (used in ciftbx.f)
ciftbx.cmn (used in local applications)

These may be applied to local software in several different ways:

1. Compile the ciftbx.f and link the resulting object file either
as an object library, or explicit references5 in the linking sequence.

2. Include ciftbx.f in the local software code, so that the toolbox will be
compiled and linked as part of the local development.

Clearly approach 1. is more efficient because the toolbox is only complied once.
However, for some small applications approach 2. may be simpler.

Note that the common file ciftbx.cmn must be 'included' into any local routines
that use CIFtbx tools. This will be illustrated in the later examples.

4Versions 2.6 and earlier of CIFtbx require certain additional source files: ciftbx.cmf, ciftbx.cmv,
hash_funcs.f and clearfp.f (or clearfp_sun.f)
5Versions 2.6 and earlier of CIFtbx require hash_funcs.o as an additional object file.

CIFtbx Primer Plus Page - 29 Release 2.6

3.2. Reading CIF data

The CIFtbx approach to reading a CIF is best illustrated with a simple example. A
source code listing of the program CIF_IN is shown below. This program reads
the file test.cif (shown after the source listing). While it is doing this it tests
the input data items against the dictionary file cif_core.dic. The output from
running CIF_IN is shown below.

 PROGRAM CIF_IN
C
C....A.. Define the data variables
 include 'ciftbx.cmn'
 logical f1,f2,f3
 character*32 name
 character*80 line
 real cela,celb,celc,siga,sigb,sigc
 real x,y,z,u,numb,sdev
 data cela,celb,celc,siga,sigb,sigc /6*0.0/

C....B.. Assign the CIFtbx files
 f1 = init_(1, 2, 3, 6)

C....C.. Request dictionary validation check
 if(dict_('cif_core.dic','valid')) goto 100
 write(6,'(/a/)') ' Requested Core dictionary not present'

C....D.. Open the CIF to be accessed
100 name='test.cif'
 if(ocif_(name)) goto 120
 write(6,'(a///)') ' >>>>>>>>> CIF cannot be opened'
 stop
C....E.. Assign the data block to be accessed
120 if(.not.data_(' ')) goto 200
 write(6,'(/a,a/)') ' Access items in data block ',bloc_

C....F.. Extract some cell dimensions; test all is OK
 f1 = numb_('_cell_length_a', cela, siga)
 f2 = numb_('_cell_length_b', celb, sigb)
 f3 = numb_('_cell_length_c', celc, sigc)
 if(.not.(f1.and.f2.and.f3)) write(6,'(a)')
 * ' Cell lengths missing!'
 write(6,'(a,6f10.4)') ' Cell ',cela,celb,celc,siga,sigb,sigc

C....G.. Extract space group notation (expected char string)
 f1 = char_('_symmetry_cell_setting', name)
 write(6,'(a,a/)') ' Cell setting ',name(1:long_)

C....H.. Get the next name in the CIF and print it out
 f1 = name_(name)
 write(6,'(a,a/)') ' Next data name in CIF is ',name

C....I.. List the audit record (possible text line sequence)
 write(6,'(a)') ' Audit record'
140 f1 = char_('_audit_update_record', line)
 write(6,'(a)') line
 if(text_) goto 140

CIFtbx Primer Plus Page - 30 Release 2.6

C....J.. Extract atom site data in a loop
 write(6,'(/a)') ' Atom sites'
160 f1 = char_('_atom_site_label', name)
 f2 = numb_('_atom_site_fract_x', x, sx)
 f2 = numb_('_atom_site_fract_y', y, sy)
 f2 = numb_('_atom_site_fract_z', z, sz)
 f3 = numb_('_atom_site_U_iso_or_equiv', u, su)
 write(6,'(1x,a4,4f8.4)') name,x,y,z,u
 if(loop_) goto 160
C
 goto 120
200 continue
 end

The logic of the program CIF_IN is basically as follows:

A Define the variables used in the program. The common variables for
CIFtbx functions are added with the line 'include ciftbx.cmn'.

B Assign specific device numbers to the various files used in the program
using the command init_. The device number 1 refers to the input CIF,
3 to the scratch file and 6 (stdout) to the error message files. The device
number 2 refers to an output CIF, if we were to choose to write one.

C Open the dictionary file 'cif_core.dic' with the command dict_. This
also specifies with the code 'valid' that the input data items be validated
against the dictionary. Note that dict_ is invoked inside an IF statement
which tests if it is .true. and therefore successful.

D Open the CIF 'test.cif' with the command ocif_ and test the returned
logical value to see if the file is opened.

E Use the data_ command, containing a blank block code, to initiate
subsequent data entries at the next encountered data block. The data
block name is returned in the variable bloc_ which is printed.

F Read the cell length values, and their standard deviations, with numb_
and print these out. Test that all of the requested data items are found.

G The char_ function is used to read a single character string.

H The name_ function is used to identify the next encountered data item.

I This sequence illustrates how text lines are read. The char_ function is
used to read each line and the text_ variable is tested to see if another
text line exists in this data item.

J This sequence illustrates how a looped list of items is read. Individual
items are read using char_ or numb_ functions and the existence of
another packet of items is tested with the variable loop_.

CIFtbx Primer Plus Page - 31 Release 2.6

Here is a listing of the input CIF 'test.cif'.

data_mumbo_jumbo

_audit_creation_date 91-03-20
_audit_creation_method from_xtal_archive_file_using_CIFIO
_audit_update_record
; 91-04-09 text and data added by Tony Willis.
 91-04-15 rec'd by co-editor with diagram as manuscript HL7
;
_dummy_test "rubbish to see what dict_ says"

_chemical_name_systematic
 trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-1,3-oxazolidin-5-one
_chemical_formula_moiety 'C18 H25 N O3'
_chemical_formula_weight 303.40
_chemical_melting_point ?

####_cell_length_a 5.959(1)
_cell_length_b 14.956(1)
_cell_length_c 19.737(3)
_cell_measurement_theta_min 25
_cell_measurement_theta_max 31
_symmetry_cell_setting orthorhombic

loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_thermal_displace_type
_atom_site_calc_flag
 s .20200 .79800 .91667 .030(3) Uij ?
 o .49800 .49800 .66667 .02520 Uiso ?
 c1 .48800 .09600 .03800 .03170 Uiso ?

loop_ _blat1 _blat2 1 2 3 4 5 6 a b c d 7 8 9 0

Executing CIF_IN produces the following printout.

 ciftbx warning: test.cif data_mumbo_jumbo line: 8
 Data name _dummy_test not in dictionary!
 ciftbx warning: test.cif data_mumbo_jumbo line: 35
 Data name _blat1 not in dictionary!
 ciftbx warning: test.cif data_mumbo_jumbo line: 35
 Data name _blat2 not in dictionary!

 Access items in data block mumbo_jumbo

 Cell dimension(s) missing!
 Cell 0.0000 14.9560 19.7370 0.0000 0.0010 0.0030
 Cell setting orthorhombic

CIFtbx Primer Plus Page - 32 Release 2.6

 Next data name in CIF is _atom_type_symbol

 Audit record
 91-04-09 text and data added by Tony Willis.
 91-04-15 rec'd by co-editor with diagram as manuscript HL7

 Atom sites
 s 0.2020 0.7980 0.9167 0.0300
 o 0.4980 0.4980 0.6667 0.0252
 c1 0.4880 0.0960 0.0380 0.0317

Note the following aspects of the CIF_IN approach to reading data.

• The first two lines of the printout (in red) were generated by the CIFtbx
library routines, not by the program CIF_IN. These messages result from
the checking of the input CIF against the dictionary 'cif_core.dic', as
requested by the dict_ command. Note also that dictionary validation
messages are issued on the execution of the data_ command, because this
is when all data items in the designated data block (in this case
mumbo_jumbo) are read from the CIF, stored in a scratch file, checked
against the dictionary and pointers all pointers and attributes of the items
are recorded. All subsequent commands use these pointers and the scratch
file to access the data.

• The '####' string in front of _cell_length_a makes this data item a
comment and CIF_IN detects it, via the logical variable f1, as missing.

• Items may be read from the CIF in any order, with the exception that items
in the same looped list should be accessed together. If you need to access
items in different lists simultaneously, then the bkmrk_ command must be
used to prevent the CIFtbx loop pointers from being mistakenly reset.

3.3. Reading text data in loops

This example illustrates how text data is read from lists. This is a typical
requirement when reading address labels or audit trails from a CIF.

Here is the file paper.cif that needs to be read.

CIFtbx Primer Plus Page - 33 Release 2.6

data_publication

loop_
_publ_author_name
_publ_author_address
 'Furber, Mark'
;
Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601
;
 'Mander, Lewis N.'
;
Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601
;

Here is an extract from a routine that reads the above addresses.

 if(data_('publication'))
 * write(6,'(a,a/)') ' Access items in data block ',bloc_
C
 write(6,'(a)') ' Author list'
210 f1 = char_('_publ_author_name', line)
 write(6,'(/1x,a)') line(1:long_)
220 f1 = char_('_publ_author_address', line)
 if(line(1:10).eq.' ') goto 230
 write(6,'(1x,a)') line(1:50)
230 if(text_) goto 220
 if(loop_) goto 210

The relevant printout from running this routine follows.

 Access items in data block publication

 Author list

 Furber, Mark
 Research School of Chemistry
 Australian National University
 GPO Box 4
 Canberra, A.C.T.
 Australia 2601

 Mander, Lewis N.
 Research School of Chemistry
 Australian National University
 GPO Box 4
 Canberra, A.C.T.
 Australia 2601

Note the following aspects of this run.

CIFtbx Primer Plus Page - 34 Release 2.6

• The char_ command is used to read both the character string item
_publ_author_name and the text lines _publ_author_address.

• The text_ variable is used to monitor whether another text line is present
in the CIF, and the loop_ variable is used to monitor if there is another
name/address packet is present in the loop.

3.4. Reading user-requested data items

The first two examples were used to show how data items are read from a CIF
when the required data names were known in advance, i.e. when pre-ordained
data items needed to be accessed. In such applications the data names can be
'hardwired' into the program code. What about those applications where the
input data items are determined by user requests? The lack of advance
knowledge on what items are to read leads to important differences in the
programming approach, because now the data attributes of these items cannot be
assumed. Either these may be determined from the nature of the input values, or
from the dictionary.

The next program example illustrates how a general list of data requested from
an input CIF may be handled. The logical function test_ is used to identify the
data type of the requested data item, and then the appropriate numb_ or char_ is
applied to enter the data value. Note that the list of requests used in the file
'test.req' is not of particular significance for this example; they have been
intentionally jumbled with respect to the input CIF 'test.cif' (see 3.2) to show
what happens if a non-loop item is accessed within a loop sequence. The CIFtbx
routines treat such a "rogue" request as a signal to terminate the loop sequence so
that the next call for a loop item will restart the sequence and extract data from its
first packet!

Here is an extract of some code that enters the input requests from 'test.req'
(shown below), and the print the items, their attributes and their values. The
printout is shown last.

CIFtbx Primer Plus Page - 35 Release 2.6

 open(unit=8,file='test.req',status='old')

300 read(8,'(a)',end=400) name
 if(.not.test_(name)) goto 300
C
 if(type_.ne.'numb') goto 320
 f1 = numb_(name, numb, sdev)
 write(6,'(a,3x,a,2i5,2f10.4)') name,type_,long_,list_,numb,sdev
 goto 300
320 if(type_.ne.'char') goto 340
 f1 = char_(name, line)
 write(6,'(a,3x,a,2i5,a)') name,type_,long_,list_,line(1:long_)
 goto 300
340 if(type_.ne.'text') goto 300
 write(6,'(a,3x,a,2i5)') name,type_,long_,list_
350 f1 = char_(name, line)
 write(6,'(a)') line
 if(text_) goto 350
 goto 300

Here is the list of data names in the request file 'test.req'.

_dummy_test
_audit_creation_date
_audit_creation_method
_audit_update_record
_chemical_name_systematic
_chemical_formula_moiety
_chemical_formula_weight
_chemical_melting_point
_cell_length_a
_cell_length_b
_cell_length_c
_cell_measurement_theta_min
_cell_measurement_theta_max

_blat2
_blat1
_blat2
_blat1
_blat2
_blat1
_blat2
_blat1
_blat2
_blat1

_symmetry_cell_setting

CIFtbx Primer Plus Page - 36 Release 2.6

The printout for this example run follows.

_dummy_test char 30 0 rubbish to see what dict_ says
_audit_creation_date char 8 0 91-03-20
_audit_creation_method char 34 0
from_xtal_archive_file_using_CIFIO
_audit_update_record text 56 0
 91-04-09 text and data added by Tony Willis.
 91-04-15 rec'd by co-editor with diagram as manuscript HL7.
_chemical_formula_moiety char 12 0 C18 H25 N O3
_chemical_formula_weight numb 6 0 303.4000 0.0000
_chemical_melting_point null 1 0
_cell_length_b numb 9 0 14.9560 0.0010
_cell_length_c numb 9 0 19.7370 0.0030
_cell_measurement_theta_min numb 2 0 25.0000 0.3000
_cell_measurement_theta_max numb 2 0 31.0000 0.3000
_blat2 char 1 2 2
_blat1 char 1 2 1
_blat2 char 1 2 4
_blat1 char 1 2 3
_blat2 char 1 2 6
_blat1 char 1 2 5
_blat2 char 1 2 b
_blat1 char 1 2 a
_blat2 char 1 2 d
_blat1 char 1 2 c
_symmetry_cell_setting char 12 0 orthorhombic

Note the following for this example.

• The command test_ is returned .true. if the specified data name (in this
case input from 'test.req') is present in the input CIF. If it is not the test
example simply reads another name.

• The test_ command sets the variables type_, long_ and list_ and
these are printed out. The possible values for type_ are null, char and numb
(a DDL1 dictionary is used in this case). The variable long_ is the length of
the value string and list_ is the sequential number of the list block.

• The value ? for _chemical_melting_point is treated as a null string of
length 1.

• The _cell_length_a item is treated as missing because of the preceding
hashes so that the value of test_ is .false. and is skipped.

• The requests for _blat2 and _blat1 are interpreted according to the
values present in the list. Note that this is not intended to be a sensible list
of data and mixes numbers and character strings. It is shown here simply
to illustrate how the value of type_ is returned. For these data items the
value of list_ is 2 because they reside in the second looped list of the
data block mumbo_jumbo.

CIFtbx Primer Plus Page - 37 Release 2.6

• Note that the request for _symmetry_cell_setting terminates the loop
block settings, and an further requests for _blat2 and _blat1 would start
at the first packet of this block.

3.5. Creating a CIF

We will now show how to generate CIF data items. The following example
program creates a CIF. For the sake of clarity the source code, and the generated
CIF 'test.new' (shown later), are kept very simple. The initial data definition
part of this program has also been omitted for brevity.

C....... Open a new CIF
400 if(pfile_('test.new')) goto 450
 write(6,'(//a/)') ' Output CIF by this name exists already!'
 goto 500
C
C....... Request dictionary validation check
450 if(dict_('cif_core.dic','valid')) goto 260
 write(6,'(/a/)') ' Requested Core dictionary not present'
C
C....... Insert a data block code
460 f1 = pdata_('whoops_a_daisy')
C
C....... Enter various single data items to show how
 f1 = pchar_('_audit_creation_method','using CIFtbx')
 f1 = pchar_('_audit_creation_extra2',"Terry O'Connell")
 f1 = pchar_('_audit_creation_extra3','Terry O"Connell')
 f1 = ptext_('_audit_creation_record',' Text data may be ')
 f1 = ptext_('_audit_creation_record',' entered like this')
 f1 = ptext_('_audit_creation_record',' or in a loop.')
 f1 = pnumb_('_cell_measurement_temperature', 293., 0.)
 f1 = pnumb_('_cell_volume', 1759.0, 13.)
 f1 = pnumb_('_cell_length_b', 8.75353553524313,0.)
 f1 = pnumb_('_cell_length_c', 19.737, .003)
C
C....... Enter some looped data
 f1 = ploop_('_atom_type_symbol')
 f1 = ploop_('_atom_type_oxidation_number')
 f1 = ploop_('_atom_type_number_in_cell')
 do 470 i=1,3
 f1 = pchar_(' ',alpha(1:i))
 f1 = pnumb_(' ',float(i),float(i)*0.1)
470 f1 = pnumb_(' ',float(i)*8.64523,0.)
C
C....... Do it again but as contiguous data with text data
 f1 = ploop_('_atom_site_label')
 f1 = ploop_('_atom_site_occupancy')
 f1 = ploop_('_some_silly_text')
 do 480 i=1,2
 f1 = pchar_(' ',alpha(1:i))
 f1 = pnumb_(' ',float(i),float(i)*0.1)
480 f1 = ptext_(' ',' Hi Ho the diddly oh!')
C

CIFtbx Primer Plus Page - 38 Release 2.6

C....... Now output some comments and various numeric and esd formats
 f1 = pcmnt_(' ')
 f1 = pcmnt_(' Loops with various numeric and esd formats')
 f1 = ploop_('_numeric_data_1')
 f1 = ploop_('_numeric_data_2')
 f1 = ploop_('_numeric_data_3')
 f1 = ploop_('_numeric_data_4')
 esdlim_ = 19
 pdecp_ = .false.
 plzero_ = .false.
 f1 = pcmnt_(' ')
 f1 = pcmnt_(' esdlim_=19, pdecp_=.false., plzero_=.false.')
 f1 = pnumb_(' ', -.01, 1.)
 f1 = pnumb_(' ', -.1, 10.)
 f1 = pnumb_(' ',-1.,100.)
 f1 = pnumb_(' ',1.,100.)
 pdecp_ = .true.
 plzero_ = .false.
 f1 = pcmnt_(' ')
 f1 = pcmnt_(' esdlim_=19, pdecp_=.true., plzero_=.false.')
 f1 = pnumb_(' ', -.01, 1.)
 f1 = pnumb_(' ', -.1, 10.)
 f1 = pnumb_(' ',-1.,100.)
 f1 = pnumb_(' ',1.,100.)
 esdlim_ = -9999
 plzero_ = .true.
 f1 = pcmnt_(' ')
 f1 = pcmnt_(' esdlim_=-9999, pdecp_=.true., plzero_=.true.')
 f1 = pnumb_(' ', -.01, 1.)
 f1 = pnumb_(' ', -.1, 10.)
 f1 = pnumb_(' ',-1.,100.)
 f1 = pnumb_(' ',1.,100.)
500 call close_
 stop
 end

Here is the contents of the created CIF 'test.new'.

data_whoops_a_daisy
_audit_creation_method 'using CIFtbx'
_audit_creation_extra2 'Terry O'Connell' #< not in dictionary
_audit_creation_extra3 'Terry O"Connell' #< not in dictionary
_audit_creation_record
;Text data may be
 entered like this
 or in a loop.
;
_cell_measurement_temperature 293
_cell_volume 1759(13)
_cell_length_b 8.75354
_cell_length_c 19.737(3)
loop_
 _atom_type_symbol
 _atom_type_oxidation_number
 _atom_type_number_in_cell
 a 1.00(10) 8.64523
 ab 2.0(2) 17.2905
 abc 3.0(3) 25.9357

CIFtbx Primer Plus Page - 39 Release 2.6

loop_
 _atom_site_label
 _atom_site_occupancy
 _some_silly_text #< not in dictionary
 a 1.00(10)
;Hi Ho the diddly oh!
;
 ab 2.0(2)
;Hi Ho the diddly oh!
;

Loops with various numeric and esd formats
loop_
 _numeric_data_1 #< not in dictionary
 _numeric_data_2 #< not in dictionary
 _numeric_data_3 #< not in dictionary
 _numeric_data_4 #< not in dictionary

esdlim_=19, pdecp_=.false., plzero_=.false.
 -.0(10) -0(10) -0E1(10) 0E1(10)

esdlim_=19, pdecp_=.true., plzero_=.false.
 -.0(10) -0.(10) -0.E1(10) 0.E1(10)

esdlim_=-9999, pdecp_=.true., plzero_=.true.
 -0.01(100) -0.1(100) -1.(100) 1.(100)

Note the following aspects of this approach.

• Because the dictionary command dict_ was used, each data name output
is checked against the dictionary 'cif_core.dic'. Unrecognised names
are flagged with the comment '#< not in dictionary'. This applies to
both looped and single data items.

• Note in the list of _numeric_data_ values how the number format
control variables esdlim_, esdlim_ and plzero_ differ.

3.6. General tips on applying CIFtbx.

3.6.1. Reading a CIF

The basic steps for reading a CIF are:

• Load any dictionaries required for checking

• Open the CIF to be read

• Locate the desired data_ block within the CIF

• Enter the required data items by name

• Note that only one input CIF may be open

CIFtbx Primer Plus Page - 40 Release 2.6

• Note that only one data_ block may be accessed

• Note that within a data_ block, only one loop_ may be accessed unless
the bookmark command bkmrk_ is used to keep the place in multiple loops

3.6.2. Writing a CIF

For applications writing CIF data, the basic steps needed are

• Load dictionaries required for checking

• Open the output CIF by name

• Write the data_ block header

• Write the tags and associated data values for non-loop_ items and/or
write a loop_ header followed by all its associated values

• Repeat this process for additional data_ blocks

• Close the CIF

• Note that only one CIF may be written at once, but an input CIF may also
be open

• Note that only one data_ block may be written at once

• Note that within a data_ block, only one loop_ may be written at once

3.6.3. Program organisation

The general structure of an application program using the CIFtbx tools is

• Declarations needed by the application

• Insert "include 'ciftbx.cmn'"

• Initialize CIFtbx variables

• Use CIFtbx initialization and dictionary loading commands

• Use functions to open input CIF and/or output CIF

• Use functions to read and/or write data items

• Calls to subroutine to close CIF

CIFtbx Primer Plus Page - 41 Release 2.6

CIFtbx Primer Plus Page - 42 Release 2.6

CHAPTER 4

Reference: Initialisation Functions

4.1. Introduction

CIFtbx provides two initialisation functions, init_ and dict_ , which affect all
other CIF reading and writing operations. The init_ function is used to assign
unit (device) numbers for files used in the CIFtbx processes. The dict_ function
inputs the data dictionaries and specifies the conditions by which input and
output data items are checked.

These functions, if used, must precede all other CIFtbx commands. If the init_
command is used to change the default unit number for a dictionary file, it must
precede the relevant dict_ command. The command dict_ is repeated for as
many dictionaries as need to be attached to the application.

4.2. init_

logical function init_ (devcif, devout, devdir, deverr)
integer devcif, devout, devdir, deverr

4.2.1 Definition

init_ is an optional logical function for specifying the Fortran device numbers for
the four CIFtbx files: the input CIF, the output CIF, an internal scratch file and the
error message file. The value of the logical function is always returned as .true.

The init_ arguments are:

No. Augment Description Default value

1 <input CIF dev number> input CIF device 1

2 <output CIF dev number> output CIF device 2

3 <scratch file dev number> scratch file device 3

4 <error file dev number> error message device 6 (stdout)

Note that dictionary files are read using the device number specified by
argument 1.

4.2.2 Application

init_ is a logical function that can be applied in a variety of ways. The typical
coding to apply this function is

CIFtbx Primer Plus Page - 43 Release 2.6

logical flag
....
flag = init_(arg1,arg2,arg3,arg4)

The value returned in flag will always be .true. The device numbers are used
by CIFtbx to open files, but the opening is not initiated by the init_ call. Note
that in some circumstances it may be necessary to invoke this command more
than once in an application. For example,

 flag = init_(1,6,3,0)
 flag = dict_('cif_mm.dic','valid dtype')
 flag = init_(5,6,3,0)

is used to attach the dictionary file as unit 1 and after this has been loaded,
change the input CIF unit to 5.

Optimal device numbers

The choice of device numbers is application and system dependent. For Unix
systems, it is a good practice to use device number 0 for the error device number
(arg4), where unit 0 is the standard error device stderr. For most OS's, device
number 6 is the default print device, and is a good choice for the error device
number (arg4), if 0 is not available.

For many systems, device numbers 5 and 6 have special meaning as the default
input stdin and list devices stdout. If no dictionaries are to be loaded, then 5 may
be appropriate for the input CIF device number (arg1) and 6 appropriate for the
output CIF device number (arg2). If a dictionary needs to be loaded, or if the
input CIF needs to be a non-default file, then the use of unit 1 should avoid
conflicts with default system behaviour.

If the local OS enforces carriage-control on unit 6, or the output CIF needs to be
written to a non-default file, then unit 2 should avoid conflicts. When the input
CIF (arg1) is opened (with ocif_) or a dictionary is opened (with dict_), the
data is copied to the direct-access file (arg3), and then closed. No close is done if
the Fortran open was suppressed (see ocif_) . Because CIFtbx immediately
copies an input CIF to the scratch file, it is acceptable for an input CIF to be on a
read-once device, such as the standard input device (stdin=5) on Unix systems.

4.3. dict_

logical function dict_ (fname, checks)
character fname*(*), checks*(*)

4.2.2 Definition

dict_ is an optional logical function used to read a CIF dictionary file (or a file
containing a list of dictionary filenames) and to initiate optional data checks. The

CIFtbx Primer Plus Page - 44 Release 2.6

logical function is returned as .true. if the named dictionary was opened, and if
the check codes are recognisable.

The command arguments are:

No. Augment Description Default value
1 <dictionary file name> filename of a dictionary, or of a file† containing a

list of dictionary filenames, or blank if only
the checking codes are to be changed.
(† the format of this file is described below)

2 <checking codes> codes use to initiate CIF checks are entered as a
single quoted string separated by blanks:
'valid' data name validation check
'catck' check data categories (default)
'catno' reverse of catck
'dtype' data type_ check
'reset' switch off all checking flags
'close' close existing dictionaries
'first' give first dictionary priority (default)
'final' give last dictionary priority
'nodup' forbid duplicate data names

4.3.2 Application

dict_ is a logical function and can be applied in a variety of ways. Typically the
required Fortran coding for the application of this function is

logical flag
....
flag = dict_(arg1,arg2)
if(dict_(arg1,arg2)) goto 100

The value returned in flag will be .true. only if the named dictionary file is
opened and the listed check codes are recognised.

CIFtbx Primer Plus Page - 45 Release 2.6

The filename in arg1 must be appropriate for use in a standard Fortran open
statement. For example, a dictionary is in a local directory could be
'cif_core.dic', whereas a dictionary file in a publicly accessible area might
be '/bin/public/cif_core.dic' The sequence of checking codes in arg2
must be enclosed in quotes and separated by blanks, e.g. 'valid dtype'.

If the dict_ command is used, it MUST be BEFORE the data_ command, to
which the data checks apply, is invoked.

Programmers (and users) needs to appreciate that when data item names are
loaded from more than one dictionary, the names loaded first have priority over
the same or aliased names loaded from subsequent dictionaries, unless the
checking code final is specified, in which case the order of priority is reversed.

The dict_ command sets the CIFtbx variable dicname_ to either the specified
filename of the opened dictionary, or, if the opened dictionary file contains the
data item _dictionary_name, to its value. The variable dicver_ is set to the
value of _dictionary_version.

CIFtbx Primer Plus Page - 46 Release 2.6

CHAPTER 5

Reference: Read Functions

5.1. Introduction

This chapter describes in detail the CIFtbx functions that read and check CIF data
items. Descriptions in this chapter assume knowledge of general principles of CIF
implementation and application covered in Chapter 3.

5.1.1 CIFtbx bookkeeping

As summarised in 3.6.1, there is a required sequence to some CIFtbx commands.
Device numbers need to be specified, dictionaries loaded and the CIF to be read,
opened. The command data_ copies the data in the named data block to the direct
access file and establishes a list of pointers that locate each data name (tag) in the
block. This is shown diagrammatically in Fig. 5.1.

data_block1
 _tag1 value1
 _tag2 value2
 loop_
 _col1 _col2
 val11 val12
 val21 val22

data_block2
 _tag3 value3
 _tag4 value4

 .
 .
 .

data_block1
 _tag1 value1
 _tag2 value2
 loop_
 _col1 _col2
 val11 val12
 val21 val22

data_block2
 _tag3 value3
 _tag4 value4

 .
 .
 .

hash tables

Pointers to
Direct Access
File

Dictionary
tables .
 .
 .

CIF as
Flat ASCII File

CIF as
Direct Access File

Data Structures
in RAM

1
2
3
4
5
6
7
8
9
10
11
12

Fig. 5.1 Preparing to Read a CIF with CIFtbx

Normally only the data from one input CIF is stored in the direct access file.
However, if more than one CIF needs to be processed simultaneously (e.g. there
is a need to move between data blocks in different CIFs, the variable append_ set
to .true. retains previous CIFs in the direct access file.

CIFtbx Primer Plus Page - 47 Release 2.6

5.2. ocif_

logical function ocif_ (fname)
character fname*(*)

5.2.1 Definition

ocif_ is an optional logical function for opening an input CIF. The value of the
function is returned as .true. if the named file has been opened.

The command argument is:

No. Argument Description

1 <input CIF filename> input CIF filename string in quotes

5.2.2 Application

ocif_ can be applied in a variety of ways. Typically the coding of this function is
logical flag
....
flag = ocif_('arg1')

or
if(ocif_('arg1')) goto 100

Only one CIF may be open at a time. If another CIF needs to be read, and the old
data items are not required, the purge_ command is used to close down the
existing CIFtbx data tables and the CIF. For example,

 call purge_
 ...

if(ocif_('next.cif')) goto 200

If the old CIF data items need to be retained and used in conjunction with items
from a new CIF, the following coding would be typical.

 append_ = .true.
 ...

if(ocif_('next.cif')) goto 200

5.3. data_

logical function data_ (name)
character name*(*)

5.3.1 Definition

data_ is a logical function for selecting the block of data items to be read. The
function is returned as .true. if the requested data block is found. Only one
block may be accessed at a time, and each data_ command removes information
of the prior data block. The data_ command initiates any data checking which
may have been requested with a prior dict_ command, and data blocks that are
not requested will not be checked.

CIFtbx Primer Plus Page - 48 Release 2.6

The command argument is:

No. Argument Description
1 <data block name> data block name string in quotes. If this is

blank, accept the next encountered data block
and place the name in the variable bloc_.

5.3.2 Application

The data_ command can be applied in several different ways. Typically the
coding of this function is

if(data_('arg1')) goto 100
write(6,'(a)') ' Requested data block not found.'
stop

or
'if(.not.data_(' ')) goto 1000
write(6,'(a, a)') ' Data block read: ',bloc_

The last statement is typical if the requests for data blocks are in a loop and need
to identified.

Here is a simple sequence for opening the file test.cif and selecting the data
block to be processed.

 character*32 name
C
C....... Open the CIF to be accessed
C
100 name='test.cif'
 write(6,'(/2a/)') ' Read data from CIF ',name
 if(ocif_(name)) goto 120
 write(6,'(a///)') ' >>>>>>>>> CIF cannot be opened'
 stop
C
C....... Assign the data block to be accessed
C
120 if(data_(' ')) goto 130
 write(6,'(/a/)') ' >>>>>>> No data_ statement found'
 stop
130 write(6,'(/a,a/)') ' Access items in data block ',bloc_

5.4. bkmrk_

logical function bkmrk_ (mark)
integer mark

5.4.1 Definition

bkmrk_ is a logical function for saving, or restoring, the current position of a data
item in the data block. It permits data elsewhere in the block to be accessed
without losing the current position. This function is returned as .true. in the
save mode provided the internal array ibkmrk can hold the current position, and

CIFtbx Primer Plus Page - 49 Release 2.6

.true. in the restore mode if the bookmark number specified was valid. If
ibkmrk overflows, increase the parameter MAXBOOK in ciftbx.sys.

The command argument is:

No. Argument Description
1 <integer variable> If specified as 0, the variable is returned with a

bookmark number pointing to the current
location in the data block. If specified as non-
zero, the data pointer is set to that position
and the integer variable returned as zero.

bkmrk_ saves the current position in the data block if arg1 is zero, and then
returns the bookmark number in the argument variable. If the integer variable
argument is non-zero, the command will restore the position saved for the
bookmark number given. The bookmark and the argument are cleared. The
position set on return allow reprocessing of the data item or loop row last
processed when the bookmark was placed. All bookmarks are cleared by a call
to data_.

5.4.2 Application

bkmrk_ can be applied in a variety of ways. Typically this function is used in the
save mode as:

integer iset, imark
...
iset = 0
if(bkmrk_(iset)) goto 100
write(6,'(a)') ' Bookmark array has been exceeded.'
stop

100 imark = iset

and in restore mode as:

iset = imark
if(bkmrk_(iset)) goto 200
write(6,'(a)') ' Bookmark entry does not exist.'
stop

5.5. find_

logical function find_ (name, type, strg)
character name*(*), type*(*), strg*(*)

5.5.1 Definition

find_ is a logical function used to locate a requested item, name or value, in the
current data block, and to return the appropriate string as an argument. The
function is returned as .true. if the item is found.

The command arguments are:

CIFtbx Primer Plus Page - 50 Release 2.6

No. Argument Description
1 <data name> The item to be positioned at in quotes. A

blank implies the next item encountered.

2 <string type code> 'head' reposition at start of CIF
'name' reposition at the item name
'valu' reposition at the item value
' ' reposition at next string

3 <returned string > returned character string specified.

5.5.2 Application

find_ may be applied in a variety of ways. Typically the application is as

character string*(MAXBUF)
...
if(find_('_atomic_number', 'valu', string)) goto 100
write(6,'(a)') ' atomic number not found')

5.6. test_

logical function test_ (name)
character name*(*)

5.6.1 Definition

test_ is a logical function used to identify the data attributes of a data item in the
current data block. The function is returned as .true. if the item is found. The
data attributes are stored in the common variables list_, type_, dictype_,
diccat_ and dicname_. The values in dictype_, diccat_ and dicname_ are
valid even if the data item is not found in the data block, provided it is present in
the dictionaries loaded with the dict_ command. The data name in the input
CIF (as opposed to any of the possible aliased names) is stored in tagname_. The
line positions of the name and values are stored in posnam_ and posval_ and
for numbers, the position of the decimal point is stored in posdec_. The
quotation mark, if any, used is stored in quote_.

The command arguments are:

No. Argument Description
1 <data name> The item to be tested at in quotes. A

blank implies the next item encountered.

The CIFtbx variables returned are as follows

list_ is an integer variable containing the sequential number of the loop
block in the data block. If the item is not within a loop structure this
value will be zero.

CIFtbx Primer Plus Page - 51 Release 2.6

type_ is a character*4 variable with the possible values:
'numb' for number data
'char' for character data
'text' for ext data
'null' if data missing or '?' or '.'

dictype_ is a character*(NUMCHAR) variable with the type code given in
the dictionary entry for the named data item. If no dictionary was
used, or no type code was specified, this field will simply agree
with type_. If a dictionary was used, this type may be more specific
than the one given by type_.

diccat_ is a character*(NUMCHAR) variable with the category of the
named data item, or '(none)'

dicname_ is a character*(NUMCHAR) variable with the name of the data item
that is found in the dictionary for the named data item. If alias_ is
.true., this name may differ from the name given in the call to
test_. If alias_ is .false. or no preferred alias is found,
dicname_ agrees with the data item name.

tagname_ is a character*(NUMCHAR) variable with the name of the data item
as found in the input CIF. It will be blank if the data item name
requested is not found in the input CIF and may differ from the
data item name provided by the user if the name used in the input
CIF is an alias of the data item name and alias_ is .true.

posnam_, posval_ and posdec_ are integer variables that may be examined if
information about the horizontal position of the name and data
read are needed. posnam_ is the starting column of the data name
found (most often 1). posval_ is the starting column of the data
value. If the field is numeric, then posdec_ will contain the effective
column number of the decimal point. For whole numbers, the
effective position of the decimal point is one column to the right of
the field.

quote_ is a character*1 variable that may be examined to determine if a
quotation character was used on character data.

5.6.2 Application

test_ may be applied in a variety of ways. Here is one coding of this function.
if(.NOT.test_('arg1')) goto 300
if(type_ .NE. 'char') goto 100
flag = char_(tagname_, string)

 goto 200
 100 if(type_ .NE. 'numb') goto 120

flag = numb_(tagname_, value, esdval)
 goto 200

The following coding is from supplied test example application tbx_ex.f. This
shows how a list of data requests in the file 'test.req' may be handled. The

CIFtbx Primer Plus Page - 52 Release 2.6

function test_ is used to type the requested item, and then numb_ and char_
are used to get the data values.

C
C....... Loop over the data request file
C
 open(unit=8,file='test.req',status='old')
300 read(8,'(a)',end=400) name
C
 f1 = test_(name)
 write(6,'(/a,3x,a,2i5)') name,type_,long_,list_
C
 if(type_.ne.'numb') goto 320
 f1 = numb_(name, numb, sdev)
 write(6,'(2f10.4)') numb,sdev
 goto 300
C
320 if(type_.ne.'char') goto 340
 f1 = char_(name, line)
 write(6,'(a)') line(1:long_)
 goto 300
C
340 if(type_.ne.'text') goto 300
350 f1 = char_(name, line)
 write(6,'(a)') line
 if(text_) goto 350
 goto 300

5.7. name_

logical function name_ (name)
character name*(*)

5.7.1 Definition

name_ is a logical function used to identify the next data name in the current data
block, and to return that string as an argument. The function is returned as
.true. if another item is found in the current data block.

The command arguments are:

No. Argument Description
1 <RETURNED data name> The next encountered data name.

5.7.2 Application

name_ may be applied in a variety of ways. Typically the application is

character string*(MAXBUF)
...
flag = name_(string)
flag = test_(string)

CIFtbx Primer Plus Page - 53 Release 2.6

5.8. numb_

logical function numb_ (name, numb, sdev)
character name*(*)
real numb, sdev

5.8.1 Definition

numb_ is a logical function used to read the numerical value and esd value (if
appended) of a specified data name in the current data block. The function is
returned as .true. if the item is found and is a number. If .false. arguments
2 and 3 are unchanged. If the esd is not attached to the number argument 3 is
unaltered.

The command arguments are:

No. Argument Description
1 <data name> Specified data name of item.

2 <real number variable> Returned number value of item.

3 <real number variable> Returned esd of the number value.

5.8.2. Application

numb_ is usually applied as follows.

logical flag
real value, esdval
character name*(MAXBUF)
...
flag = numb_(name, value, esdval)

5.9. numd_

logical function numd_ (name, numb, sdev)
character name*(*)
double precision numb, sdev

5.9.1. Definition

numd_ is a logical function used to read a double-precision number and esd value
(if appended) of a specified data name in the current data block. The function is
returned as .true. if the item is found and is a number. If .false. arguments 2
and 3 are unchanged. If the esd is not attached to the number argument 3 is
unaltered.

The command arguments are:

No. Argument Description
1 <data name> The specified data name of item.

CIFtbx Primer Plus Page - 54 Release 2.6

2 <dp number variable> Returned number value of item.

3 <dp number variable> Returned esd of the number value of item.

5.9.2 Application

numd_ is typically used as follows.

logical flag
double precision dvalue, desdval
character name*(MAXBUF)
...
flag = numd_(name, dvalue, desdval)

5.10. cmnt_

logical function cmnt_ (strg)
character strg*(*)

5.10.1 Definition

cmnt_ is a logical function used to read the next comment string in the current
data block. The function is returned as .true. if a comment is found. The initial
comment character "#" is not included in the returned string. A completely blank
line is treated as a comment.

The command arguments are:

No. Argument Description
1 <Returned char variable> The returned character string of

length long_.

5.10.2 Application

cmnt_ is usually applied as follows.

logical flag
character coment*(MAXBUF)
...
flag = cmnt_(coment)

5.11. purge_

subroutine purge_

5.11.1 Definition

purge_ is a subroutine used to reset all data tables and close opened CIFtbx files.

CIFtbx Primer Plus Page - 55 Release 2.6

5.11.2 Application

purge_ is called after all data access and output activities are complete.

call purge_

CIFtbx Primer Plus Page - 56 Release 2.6

CHAPTER 6

Reference: Write Functions

6.1. Introduction

The functions needed to write a CIF are similar to those described in Chapter 5 to
read a CIF. A summary of the CIFtbx writing tools is given in Chapter 2.

The basic steps involved in writing CIF data are as follows.

• load the CIFtbx common variables

 include 'ciftbx.cmn'
 logical flag

• open the output CIF

 flag = pfile_(<file name>)

The file name is entered as blank if items are to be written to an output CIF
that has already been opened. If a non-blank file name is entered and the
named file is already open the value of flag will be returned as .false.

• write the data_ block header line

flag = pdata_(<block name>)

If a data block of the same name already exists in the output CIF the value
of flag will be returned as .false.

• write the data items to the CIF

 Values are written with pchar_, pnumb_, pnumd_ or ptext_.

• close the output CIF

call close_

Must be done after the last data value or comment is written.

6.2. pfile_

logical function pfile_ (fname)
character fname*(*)

CIFtbx Primer Plus Page - 57 Release 2.6

6.2.1. Definition
pfile_ is a logical function for opening an output file with the specified file name.

The command arguments are:
No. Argument Description
1 <file name> Blank for use of currently open file

If the filename is entered as blank, items will be written to an output CIF that has
already been opened. If a non-blank file name is entered, and the named file is
already open, the value of flag will be returned as .false.

6.2.2. Application

pfile_ is typically applied as follow.

character*(MAXBUF) fname
logical flag
...
flag = pfile_(fname)

6.3. pdata_

logical function pdata_ (name)
character name*(*)

6.3.1. Definition
pdata_ is a logical function for writing a data block header line into the output CIF.
The value of the function is returned as .true. if the block is created. The value will
be .false. if the block name already exists in the output CIF. This function produces
a save frame instead of a data block if the variable saveo_ is true during the call.
No block duplicate check is made for a save frame.

The command arguments are:
No. Argument Description
1 <block name> Blank for use of the next data block

 6.3.2. Application

pdata_ is usually applied as follows.

character*(MAXBUF) bname
logical flag
...
flag = pdata_(bname)

The following example code is used to open a new output CIF and to write the first
data_ block header.

CIFtbx Primer Plus Page - 58 Release 2.6

C....... Open a new CIF
400 if(pfile_('test.new')) goto 450
 write(6,'(//a/)')
 * ' Output CIF by this name exists already!'
 goto 500
C
C....... Insert a data block code
450 f1 = pdata_('whoops_a_daisy')

6.4. ploop_

logical function ploop_ (name)
character name*(*)

6.4.1. Definition
ploop_ is a logical function for writing a data name belonging to a list of items
(i.e. a loop_) being written to the output CIF. The value of the function is
returned as .true. if the application conforms with the list syntax.

The command arguments are:
No. Argument Description
1 <data name> Data name of the item that is a member of a list

of items.

6.4.2. Application

ploop_ is usually applied as follows.

character*(MAXBUF) tname
logical flag
...
flag = ploop_(tname)

Here is example code showing how data names, and data values, are added to an
output CIF.

C....... Enter some looped data
 f1 = ploop_('_atom_type_symbol')
 f1 = ploop_('_atom_type_oxidation_number')
 f1 = ploop_('_atom_type_number_in_cell')
 do 470 i=1,10
 f1 = pchar_(' ',alpha(1:i))
 f1 = pnumb_(' ',float(i),float(i)*0.1)
470 f1 = pnumb_(' ',float(i)*8.64523,0.)

The above code produces the following output. Note that the loop_ header was
created automatically by the first ploop_ call.

CIFtbx Primer Plus Page - 59 Release 2.6

 loop_
 _atom_type_symbol
 _atom_type_oxidation_number
 _atom_type_number_in_cell
 a 1.00(10) 8.64523
 ab 2.0(2) 17.2905
 abc 3.0(3) 25.9357
 abcd 4.0(4) 34.5809
 abcde 5.0(5) 43.2262
 abcdef 6.0(6) 51.8714
 abcdefg 7.0(7) 60.5166
 abcdefgh 8.0(8) 69.1618
 abcdefghi 9.0(9) 77.8071
 abcdefghij 10.0(10) 86.4523

6.5. pchar_

logical function pchar_ (name, string)
character name*(*), string*(*)

6.5.1. Definition

pchar_ is a logical function for writing a character string to the output CIF. The
value of the function is returned as .true. if the name is unique AND if dict_ is
invoked, the name is defined in the dictionary AND the invocation conforms to the
CIF logical structure. The action of pchar_ is modified by the variables pquote_
and nblanko_. If pquote_ is non-blank, it is used as a quotation character for the
string written by pchar_. The valid values are '''', '"', and ';'. In the last case a text
field is written. If the string contains a matching character to the value of quote_,
or if quote_ is not one of the valid quotation characters, a valid, non-conflicting
quotation character is used. Except when writing a text field, if nblanko_ is true,
pchar_ converts a blank string to an unquoted period.

The command arguments are:
No. Argument Description
1 <data name> If the name is blank, do not output name.

2 <character string> A character string of MAXBUF chars or less.

6.5.2. Application

pchar_ is typically applied as follows.

character*(MAXBUF) tname
character*(MAXBUF) string
logical flag
...
flag = pchar_(tname,string)

CIFtbx Primer Plus Page - 60 Release 2.6

6.6. pcmnt_

logical function pcmnt_ (string)
character string*(*)

6.6.1. Definition

pcmnt_ is a logical function for writing a comment; string to the output CIF. The
value of the function is returned .true. The comment character "#" should not be
included in the string. A blank comment is presented as a blank line without the
leading "#".

The command arguments are:
No. Argument Description
1 <character string> A character string of MAXBUF chars or less.

6.6.2. Application

pcmnt_ is typically applied as follows.

character*(MAXBUF) string
logical flag
...
flag = pcmnt_(string)

Here is and example of how two comments are written to the output file.

 f1 = pcmnt_(' ')
 f1 = pcmnt_(' Loops with various numeric and esd formats')

6.7. pnumb_

logical function pnumb_ (name, numb, sdev)
character name*(*)
real numb, sdev

6.7.1. Definition

pnumb_ is a logical function for writing a single precision number and its esd; to the
output CIF. The value of the function is returned as .true. if the name is unique
AND if dict_ is invoked, the name is defined in the dictionary AND the invocation
conforms to the CIF logical structure. The number of esd digits is controlled by the
variable esdlim_

The command arguments are:
No. Argument Description
1 <data name> If the name is blank, do not output name.

CIFtbx Primer Plus Page - 61 Release 2.6

2 <real variable> Number to be inserted.

3 <real variable> Esd number to be appended in parentheses.

6.7.2. Application

pnumb_ is usually applied as follows.

character*(MAXBUF) tname
real xnumb, xesd
logical flag
...
flag = pnumb_(tname, xnumb, xesd)

6.8. pnumd_

logical function pnumd_ (name, numb, sdev)
character name*(*)
double precision numb, sdev

6.8.1. Definition

pnumd_ is a logical function for writing a double precision; number and its esd; to
the output CIF. The value of the function is returned as .true. when the name is
unique, AND, if dict_ is invoked, the name is defined in the dictionary, AND
the invocation conforms to the CIF logical structure. The number of esd digits is
controlled by the variable esdlim_

The command arguments are:
No. Argument Description
1 <data name> If the name is blank, do not output name.

2 <double precision variable> Number to be inserted.

3 <double precision variable> Esd number to be appended in
parentheses.

6.7.2. Application

pnumb_ is usually applied as follows.

character*(MAXBUF) tname
double precision xnumb, xesd
logical flag
...
flag = pnumd_(tname, xnumb, xesd)

CIFtbx Primer Plus Page - 62 Release 2.6

6.9. ptext_

logical function ptext_ (name, string)
character name*(*), string*(*)

6.9.1. Definition

pnumd_ is a logical function for writing a character stringcharacter data; to the
output CIF. The logical function returned as .true. if the name is unique AND if
dict_ is invoked, the name is defined in the dictionary AND the invocation
conforms to the CIF logical structure. ptext_ is invoked repeatedly until the text
is finished. Only the first invocation will insert a data name.

The command arguments are:
No. Argument Description
1 <data name> If the name is blank, do not output name.

2 <character string> A character string of MAXBUF chars or less.

6.9.2. Application

ptext_ is usually applied as follows.

character*(MAXBUF) tname
character*78 string(10)
logical flag
integer ii
...
do ii = 1,10
flag = ptext_(tname, string(ii))
enddo

Here is code to write three lines of text.

 f1 = ptext_('_audit_creation_record',' Text data may be ')
 f1 = ptext_('_audit_creation_record',' entered like this')
 f1 = ptext_('_audit_creation_record',' or in a loop.')

This produces the following CIF output. Note the comment created by CIFtbx
because the tag is not in the dictionary being used.

_audit_creation_record #< not in dictionary
;Text data may be
 entered like this
 or in a loop.

6.10. prefx_

logical function prefx_ (strg, lstrg)

CIFtbx Primer Plus Page - 63 Release 2.6

character strg*(*)
integer lstrg

6.10.1. Definition

prefx_ is a logical function for writing a prefix; string to subsequent lines of the
output CIF. The logical function returned as .true. The second argument may be
zero to suppress a previously used prefix, or greater than the non-blank length of
the string to force a left margin. Any change in the length of the prefix string
flushes pending partial output lines, but does not force completion of pending
text blocks or loops. This function allows the CIF output functions to be used
within what appear to be text fields to support annotation of a CIF.

The command arguments are:
No. Argument Description
1 <character string> A character string of MAXBUF chars or less.

2 <integer variable> The length of the prefix string to use.

6.10.2. Application

prefx_ is usually applied as follows.

character*10 string
integer lstr
logical flag
...
lstr = len(string)
flag = prefx_(string, lstr)

6.11. close_

subroutine close_

6.11.1. Definition

close_ is a subroutine called to close the creation CIF.

6.11.2. Application

close_ must be used if pfile_ is used.

call close_

CIFtbx Primer Plus Page - 64 Release 2.6

CHAPTER 7

Reference: Variables

Most simple CIFtbx applications need be aware of just a few basic variables:
list_, loop_, strg_, text_, and type_. For advanced applications, a
rich environment of general monitor, general control, input monitor and output
control variables is provided.

General
Monitor

General
Control

Input
Monitor

Output
Control

alias_ aliaso_
align_

append_
bloc_
decp_ pdecp_

dictype_
diccat_
dicname_
dicver_
esddig_ pesddig_

esdlim_
file_

glob_ globo_
line_

list_
long_

longf_
loop_
lzero_ plzero_

nblank_ nblanko_
posdec_ pposdec_
posend_ pposend_
posnam_ pposnam_
posval_ pposval_

precn_
quote_ pquote_

recbeg_
recend_

recn_
save_ saveo_
strg_

tabl_
tabx_ ptabx_

tagname_
tbxver_

text_
type_

CIFtbx Primer Plus Page - 65 Release 2.6

In order to make any of these variables available to a program, function or
subroutine, the common block ciftbx.cmn must be included, as by

 include 'ciftbx.cmn'

The following CIFtbx general monitor variables give the status of general
processing by CIFtbx.

file_ Character*(MAXBUF) variable: Set by dict_, ocif_ and pfile_ to
the filename of the current file.

longf_ Integer variable: Set by dict_, ocif_ and pfile_ to the length of
the filename in file_.

precn_ Integer variable: Reports the record number (starting from 1) of the last
line written to the output CIF. Set to zero by init_. Also set to zero
by pfile_ and close_ if the output CIF file name was not blank.

recn_ Integer variable: Reports the record number (starting from 1) of the last
line read from the direct access copy of the input CIF.

tbxver_ Character*32 variable: Initialized to the CIFtbx version and date in the
form 'CIFtbx version N.N.N, DD MMM YY '6

The following CIFtbx general control variables control input and general
processing by CIFtbx. The user may accept the default values or may store new
values into these variables to change the behavior of the commands.

alias_ Logical variable: Set .true. will cause calls to CIFtbx functions to
accept aliases of data item names (see 2.6, above). The preferred
synonym from the dictionary will be substituted internally, provided
aliased data names were supplied by an input dictionary (via dict_).
The default is .true., but alias_ may be set to .false. in an
application.

append_ Logical variable: Set .true. will cause each call to ocif_ to append
the information found to the current CIF to the infoormation in the
direct access file for any prior CIFs. The default is .false., in which
case each call to ocif_ overwrites the information for the prior CIF.

line_ Integer variable: Specifies the input/output line limit for processing a
CIF. The default value is 80 characters. This limit includes the visible
printable characters of the line, not the system-dependent line
terminators. This variable may be set by the program. The maximum
value is MAXBUF that has a default value of 200.

6The length of this string may be increased in future versions to allow for multidigit version numbers and to
become year-2000 compliant,

CIFtbx Primer Plus Page - 66 Release 2.6

nblank_ Logical variable: Set .true. will cause calls to char_ or test_ that
encounter a non-text quoted blank to return the type as 'null' rather
than 'char'.

recbeg_ Integer variable: Gives the record number of the first record to be used.
May be changed by the user to restrict access to a CIF.

recend_ Integer variable: Gives the record number of the last record to be used.
May be changed by the user to restrict access to a CIF.

tabx_ Logical variable: Set .true. causes tab character expansion to blanks
during the reading of a CIF. The default is .true.

The following CIFtbx input monitor variables monitor the processing of input
from a CIF.

bloc_ Character*(NUMCHAR) variable: Set by data_ to the current block
name.

decp_ Logical variable: Set when processing numeric input, .true. if there
is a decimal point in the numeric value, .false. otherwise, set by
numb_ and numd_.

diccat_ Character*(NUMCHAR) variable: Set by test_, find_, char_, numb_,
numd_ to the category (see test_) or '(none)'

dicname_
Character*(NUMCHAR) variable: Set by test_, find_, char_, numb_,
numd_ to the root alias (see test_) of name or by dict_ to the name
the dictionary just loaded.

dictype_
Character*(NUMCHAR) variable: Set to the precise data type code (see
test_). This is the type code given in the dictionary entry for the
named data item. If no dictionary was used, or no type code was
specified, this field will simply agree with type_. If a dictionary was
used, this type may be more specific (e.g. 'float' or 'int') than
the one given by type_ (e.g. 'numb').

dicver_ Character*(NUMCHAR) variable: Set by dict_ to the version of the
dictionary

esddig_ Integer variable : Set when processing numeric input to the number of
esd digits in the last number read from a CIF. Will be zero if no esd
was given.

glob_ Logical variable: Set by data_ to signal that the current data block is
actually a global block (.true. for a global block). The application
is responsible for managing the relationship of global data to other
data blocks.

CIFtbx Primer Plus Page - 67 Release 2.6

list_ Integer variable: Set by test_, find_, char_, numb_, numd_ to the
sequential number of the loop block in the data block. If the item is
not within a loop structure this value will be zero.

long_ Integer variable: Set by test_, find_, char_, cmnt_, numb_, numd_
to the length of the data string in strg_.

loop_ Logical variable: Set by test_, find_, char_, numb_, numd_ to
.true. if another loop packet is present.

lzero_ Logical variable: Set when processing numeric input to .true. if the
numeric value is of the form [sign]0.nnnn rather than [sign].nnnn,
.false. otherwise, set by numb_ and numd_.

posdec_ Integer variable : Set when processing numeric input to the column
number (position along the line, counting from 1 at the left) of the
decimal point or the last number read, if a decimal point was present,
set by numb_ and numd_. For whole numbers, the effective position
of the decimal point is one column to the right of the field.

posend_ Integer variable : Set by test_, find_, char_, numb_, numd_ to the
ending column number (position along the line, counting from 1 at
the left) of the last data value read, not including a terminal quote.

posnam_ Integer variable: Set by test_, find_, char_, numb_, numd_ to the
starting column number (position along the line, counting from 1 at
the left) of the last name or comment or data block read.

posval_ Integer variable: Set by test_, find_, char_, numb_, numd_ to the
starting column of the last data value read. Also reports the column
number (position along the line, counting from 1 at the left) of the
terminal "save_" of a save frame.

quote_ Character variable: Set by test_, find_, char_ to the quotation
symbol found delimiting the last string read.

save_ Logical variable : Set by data_ to .true. if the current data block is
actually a save-frame.

strg_ Character*(MAXBUF) variable: Set by test_, find_, char_, cmnt_,
numb_, numd_ to the current data item.

tabx_ Logical variable: Set .true. will cause the expansion of tab characters to
blanks during the reading of a CIF. The default is .true.

tagname_
Character*(NUMCHAR) variable: Set by test_, find_, char_, numb_,
numd_ to the name of the data item as found in the input CIF. It will
be blank if the data item name requested is not found in the input CIF

CIFtbx Primer Plus Page - 68 Release 2.6

and may differ from the data item name provided by the user if the
name used in the input CIF is an alias of the data item name and
alias_ is .true.

text_ Logical variable: Set by test_, find_, char_ to .true. if another
text line is present.

type_ Character*4 variable: Set by test_, find_, char_, numb_, numd_ to
the data type code (see test_), i.e. to

'numb' for number data
'char' for character data
'text' for text data
'null' if data missing or '?' or '.'

The following CIFtbx output control variables control output formats of a CIF
being written.

aliaso_ Logical variable: Set .true. will cause output functions to convert
alias names to preferred synonyms in the dictionary. The default is
.false. The setting of aliaso_ is independent of the setting of
alias_.

align_ Logical variable: Set .true. will cause an alignment of loop_ lists
during the creation of a CIF. The default is .true.

esdlim_ Integer variable: Specifies the upper limit of esd's produced by pnumb_,
and, implicitly, the lower limit. The default value is 19, which limits
esd's to the range 2-19. Typical values of esdlim_ might be 9
(limiting esd's to the range 1-9), 19, or 29 (limiting esd's to the range 3-
29)

globo_ Logical variable: Set .true. will cause the output data block from
pdata_ to be written as a global block.

nblanko_ Logical variable: Set .true. will cause the output functions to convert
quoted blank strings to an unquoted period (i.e. to a data item of type
null). The default is .false.

pdecp_ Logical variable: Set .true. will cause the output functions to insert a
decimal point in all numbers written by pnumb_ or pnumbd_. If set
.false. then a decimal point will be written only when needed. The
default is .false.

pesddig_
Integer variable: Specifies the the number of digits of esd's produced by
pnumb_ and pnumd_, provided the value of pesddig_ is non-zero
and esdlim_ is negative.

plzero_ Logical variable: Set .true. will cause the output functions to insert a
zero before a leading decimal point. The default is .false.

CIFtbx Primer Plus Page - 69 Release 2.6

pposdec_
Integer variable: Specifies the column number (position along the line,
counting from 1 at the left) of the decimal point for the next number
to be written. This acts very much like a decimal centered tab in a
word processor, to help align columns of number on a decimal point,
if a decimal point is present.

pposend_
Integer variable: Specifies the ending column number of the next
number or quoted character value to be written. Used to pad with
zeros or blanks.

pposnam_
Integer variable: Specifies the starting column number of the next name
or comment to be written.

pposval_
Integer variable: Specifies the starting column number of the next data
value to be written.

pquote_ Character variable: Specifies the quotation symbol to be used for the
next string written.

precn_ Integer variable: Returns the record number of the last line written to
the output CIF. Set to zero by init_. Also set to zero by pfile_ and
close_ if the output CIF file name was not blank.

ptabx_ Logical variable: Set .true. will cause tab character expansion to
blanks during the creation of a CIF. The default is .true.

saveo_ Logical variable: Set .true. will cause the pdata_ to output a save
frame header line rather than a data block header line. The default is
.false.

tabl_ Logical variable: Set .true. if tab-stop alignment is to be used for data
items written to the CIF. The default is .true.

CIFtbx Primer Plus Page - 70 Release 2.6

Column Numbering

The columns of both input and output CIFs are numbered from 1 on the left,
usually to 80, unless line_ has been changed to a different value. Variables
such as pposdec_, pposend_, pposnam_, and pposval_, which specify the
column numbers at which items are to be written may be set to zero if CIFtbx is
to use its best estimate. In general, the routines that accept the column number
specifications will reset the associated variables to zero after each use. The
following CIF fragment illustrates the column numbering used.

This is a CIF fragment to illustrate CIFtbx column numbering
1 2 3 4 5 6 7
#234567890123456789012345678901234567890123456789012345678901234567890

 _cell.length_a 37.58
^ ^ ^ ^
| | | |
posnam_ = 5 | | posend_=28
| |
| posdec_=26
|
posval_= 24

CIFtbx Primer Plus Page - 71 Release 2.6

CHAPTER 8

Reference: Error Message Glossary

The CIFtbx functions avoid issuing error messages unless they are requested, or
there is no sensible way to continue. The preferred approach is for the CIFtbx
functions to return true or false function values so that the application program
can respond to run-time problems in a controlled way and take corrective action
if it is possible. Nevertheless some types of processing errors, such as exceeding
the dimensions of critical CIFtbx arrays, will require that an appropriate message
be issued and execution cease.

All CIFtbx error messages have a common format. Each begins with either a
“warning” or “error” header line with the name of the file being processed, the
current data block or save frame, and the line number. The next line contains the
text of the message.

For example, the following warning message is issued by the test program
tbx_ex.f when it finds that the file test.cif contains the unknown data item
name _dummy_test, in the data block data_mumbo_jumbo.

ciftbx warning: test.cif data_mumbo_jumbo line: 12
Data name _dummy_test not in dictionary!

Fatal Errors: Array Bounds

The following messages are issued if the CIFtbx array bounds are exceeded.
Operation terminates immediately. Array bounds can be adjusted by changing
the PARAMETER values in ciftbx.sys. If the value of MAXBUF needs to be
changed, the file ciftbx.cmv must be updated.

Input line_ value > MAXBUF
Number of categories > NUMBLOCK
Number of data names > NUMBLOCK
CIFdic names > NUMDICT
Dictionary category names > NUMDICT
Items per loop packet > NUMITEM
Number of loop_s > NUMLOOP

The following array bounds message is not fatal.

More than MAXBOOK bookmarks requested
The number of simultaneous bookmarks is more than MAXBOOK. The function
bkmrk_ will return .false., and processing will continue, so that the calling
program may take appropriate action before termination, but this is effectively a
fatal error for which recompilation with a larger value of MAXBOOK is necessary.

CIFtbx Primer Plus Page - 73 Release 2.6

Fatal Errors: Data Sequence, Syntax and File Construction

Dict_ must precede ocif_
Dictionary files must be loaded before an input CIF is opened because some
checking occurs during the CIF loading process.

Illegal tag/value construction
Data name (i.e. a "tag") and data values are not matched (outside a looped list).
This usually means that a data name immediately follows another data name, or
a data value was found without a preceding data name. The most likely cause of
this error is the failure to provide a “.” or “?” for missing or unknown data
values, or a failure to declare a loop_ when one was intended.

Item miscount in loop
Within a looped list the total number of data values must be an exact multiple of
the number of data names in the loop_ header.

Prior save-frame not terminated
Save-frame terminator found out of context
Save-frames must start with save_<framecode> and end with save_. These
messages will be issued if this does not occur.

Syntax construction error
Within a data block or save-frame the number of data values does not match the
number of data names (ignoring loop structures).

Unexpected end of data
When processing multi-line text the end of the CIF is encountered before the
terminal semicolon.

Fatal Errors: Invalid Arguments

The following messages are generated by calls with invalid arguments.

Call to find_ with invalid arguments
Internal error in putnum

Warnings: Input Errors

Category <cat-code> first implicitly defined in cif
The category code in the DDL2 data name is not matched by an explicit definition
in the dictionary. This may be intentional, but it more likely indicates a
typographical error in the dictionary or the CIF.

Category <key-tag> not given
The category key tag specified in a DDL2 data set or the list reference tag
specified in a DDL1 data set was not found, even though some tags in that
category were given. This is usually due to an incomplete loop header.

CIFtbx Primer Plus Page - 74 Release 2.6

Data name <name> not in dictionary!
The data item name <name> was used in the CIF but could not be found in the
dictionary.

Data block header missing
No data_, save_ or global_ was found when expected.

Duplicate data item <name>
There were two or more identical data names <name> in a data block or save-
frame.

Exponent overflow in numeric input
Exponent underflow in numeric input
The numeric value being processed has an exponent out of the range that can be
processed on this machine. If the string involved is not intended to be processed
as a number, then quoting it may resolve the problem.

Heterogeneous categories in loop <new cat-code> vs <old cat-
code>
Looped lists should not contain data from different categories. This message is
issued if the category of a new data items fails to match the category of a prior
data item. A special category (none) is used to denote item names for which no
category has been declared. No warning is issued on this level for a loop for
which all data items have no category declared.

Input line length exceeds line_
Non-blank characters were found beyond the value given by the variable line_.
The default value for line_ is 80, which is the upper bound for lines in a valid
CIF. The extra characters in column positions line_+1 through MAXBUF will
be processed but the input file may need to be reformatted for use with other CIF
handling programs.

Missing loop_ items set as DUMMY
When writing an output CIF, a looped list of items was truncated with an
incomplete loop packet (i.e. the number of items did not match the number of
loop_ data names). The missing values were set to the character string “DUMMY”.

Numb type violated <name>
The data item <name> has been processed with an explicit dictionary type numb,
but with a non-numeric value. Note that the values “?” or “.” will not generate
this message.

Quoted string not closed
Character values may be enclosed by bounding quotes. The strict definition of a
"quoted string" value is that it must start with a <wq> digraph and end with a
<qw> digraph, where w is a white-space character blank or tab and q is a single
or double quote and the same type of quote mark is used in the terminal digraph
as was used in the initial digraph. This message is issued if these conditions are
not met.

CIFtbx Primer Plus Page - 75 Release 2.6

Warnings: Output Errors

Converted pchar_ output to text for <string>
An attempt was made to write a string to a CIF with pchar_ instead of ptext_,
but the string contains a combination of characters for which ptext_ must be
used. This warning is issued and processing continues.

ESD less than precision of machine
Overflow of esd
Underflow of esd
A call to pnumb_ or numb_ was made with values of the number and esd that
cannot be presented properly on this machine. A bounding value (0 or 99999 is
used for the esd, this warning message is issued and processing continues.

Invalid value of esdlim_ reset to 19
In processing numeric output, a value of esdlim_ less than 9 or greater than
99999 was found. The value of esdlim_ is forced to 19, this warning is issued,
and processing continues.

Missing: missing loop_ name set as _DUMMY
Missing: missing loop_ items set as DUMMY
In processing a loop_ the library has had to pad either the header or the values.
This warning is issued and processing continues.

Output CIF line longer than line_
In processing a line of output the data being presented forces the line to be longer
than the value specified in line_. This warning is issued and processing
continues. This warning should not occur if tags and values each of which can fit
on a line are used.

Out-of-sequence call to end text block
The processing logic for termination of a text block has been invoked without a
text block having been started. This warning is issued and processing continues.
This can only be caused by users calling some of the internal routines of the
library rather than the standard interface routines.

Output prefix may force line overflow
A prefix string specified to prefx_ is longer than the maximum line length
allowed less the allowed length of tags. This warning is issued and processing
continues.

Prefix string truncated
A prefix string specified to prefx_ is longer than the maximum line length
allowed. It is truncated and processing continues

CIFtbx Primer Plus Page - 76 Release 2.6

Warnings: Dictionary Checks

Aliases and names in different loops; only using first alias
When a DDL2 dictionary contains a loop of alias declarations the corresponding
data name declarations are expected to be in the same loop. This message is
issued if separate loops are used. Only the first alias name is used, but
processing continues.

Attempt to redefine category for item
Attempt to redefine type for item
If a DDL2 dictionary contains a category or type for a data item that conflicts
with an earlier declaration, these warnings are issued. The redeclaration is
ignored.

Categories and names in different loops
Types and names in different loops
When a DDL2 dictionary contains a loop of category or type declarations, the
corresponding data name declarations are expected to be in the same loop. This
message is issued if separate loops are used. Only the first category name or type
is used, but processing continues.

Category id does not match block name
In a DDL2 dictionary the save-frame code is expected to start with the category
name. If a category name within the frame is not within a loop it is checked
against that in the frame code and a warning is issued if these do not match.

Conflicting definition of alias
When a DDL2 dictionary contains a new declaration of an alias for a data name
that is in conflict with a previous alias definition, this warning is issued. The
second alias declaration is ignored.

Duplicate definition of same alias
When a DDL2 dictionary contains a new declaration of an alias for a data name
that duplicates a previously defined alias pair, this warning is issued.

Item name <name> does not match category name
If category checking is enabled and the category assigned to an item name does
not match the initial characters of the item name, this warning is issued and
processing continues. This may indicate a typo or a deprecated item in the
dictionary.

Item type <type-code> not recognised
In CIFtbx, DDL2 dictionary precise type codes are translated to the DDL
primitive type codes numb, char and text. If an unrecognised type code is
found for which CIFtbx does not have a translation, this warning is issued.

CIFtbx Primer Plus Page - 77 Release 2.6

Multiple DDL 1 and 2 category definitions
Multiple DDL 1 and 2 related key definitions
Multiple DDL 1 and 2 name definitions
Multiple DDL 1 and 2 type definitions
Multiple DDL 1 and 2 related item definitions
Multiple DDL 1 and 2 related item functions
These messages are issued if both DDL and DDL2 style declarations for
categories, category keys (i.e. list references), data names, data types and related
items are used in the same data block or save-frame.

Multiple categories for one name
Multiple types for one name
These messages are issued if a dictionary contains a loop of category or type
definitions, and an unlooped declaration of a single data name. The first category
or type definition is used and processing continues.

No category defined in block <name> and name <name> does not
match
This message is issued if a DDL2 dictionary contains no category for the defined
data item and it was not possible to derive an implicit category from the block
name. This message usually indicates a typographical error in the dictionary.

No category specified for name <name>
This warning is issued if a dictionary contains categories and category checking
is enabled but no category is defined for the named data item.

No name defined in block
No name in the block matches the block name
These messages are issued if a dictionary save-frame or data block contains no
name definition or if all the names defined fail to match the block name.

No type specified for name <name>
This message is issued if a type code is missing from a dictionary and type
checking was requested in the dict_ invocation.

One alias, looped names, linking to first
A DDL2 dictionary may contain a list of data names and a single alias outside of
this loop. In this case the correct name to which to link the alias must be derived
implicitly. If the save frame code matches the first name in the loop, no warning
is issued, because the use of the block name was probably the intended result, but
if no such match is found, this warning is issued.

CIFtbx Primer Plus Page - 78 Release 2.6

APPENDIX A

Usage Restrictions and Policy

Creative endeavors depend on the lively exchange of ideas. There are laws and
customs that establish rights and responsibilities for authors and the users of
what authors create. This notice is not intended to prevent you from using the
software and documents in this package, but to ensure that there are no
misunderstandings about terms and conditions of such use.

Please read the following notice carefully. If you do not understand any portion
of this notice, please seek appropriate professional legal advice before making
use of the software and documents included in this software package. In addition
to whatever other steps you may be obliged to take to respect the intellectual
property rights of the various parties involved, if you do make use of the
software and documents in this package, please give credit where credit is due by
citing this package, its authors and the URL or other source from which you
obtained it, or equivalent primary references in the literature with the same
authors.

Some of the software and documents included within this software package are
the intellectual property of various parties, and placement in this package does
not in any way imply that any such rights have in any way been waived or
diminished.

With respect to any software or documents for which a copyright exists, ALL
RIGHTS ARE RESERVED TO THE OWNERS OF SUCH COPYRIGHT.

Even though the authors of the various documents and software found here have
made a good faith effort to ensure that the documents are correct and that the
software performs according to its documentation, and we would greatly
appreciate hearing of any problems you may encounter, the programs and
documents any files created by the programs are provided AS IS without any
warrantee as to correctness, merchantability or fitness for any particular or
general use.

THE RESPONSIBILITY FOR ANY ADVERSE CONSEQUENCES FROM THE
USE OF PROGRAMS OR DOCUMENTS OR ANY FILE OR FILES CREATED
BY USE OF THE PROGRAMS OR DOCUMENTS LIES SOLELY WITH THE
USERS OF THE PROGRAMS OR DOCUMENTS OR FILE OR FILES AND
NOT WITH AUTHORS OF THE PROGRAMS OR DOCUMENTS.

CIFtbx Primer Plus Page - 79 Release 2.6

The IUCr Policy
on the

Use of the Crystallographic Information File (CIF)
(Reproduced with permission from the IUCr Web Page)

The Crystallographic Information File [Hall, Allen, Brown 91] is, as of January
1992, the recommended method for submitting publications to Acta
Crystallographica Section C. The International Union of Crystallography holds
the Copyright on the CIF, and has applied for Patents on the STAR File syntax
which is the basis for the CIF format.

It is a principal objective of the IUCr to promote the use of CIF for the exchange
and storage of scientific data. The IUCr's sponsorship of the CIF development
was motivated by its responsibility to its scientific journals, which set the
standards in crystallographic publishing. The IUCr intends that CIFs will be used
increasingly for electronic submission of manuscripts to these journals in future.
The IUCr recognises that, if the CIF and the STAR File are to be adopted as a
means for universal data exchange, the syntax of these files must be strictly and
uniformly adhered to. Even small deviations from the syntax would ultimately
cause the demise of the universal file concept. Through its Copyrights and
Patents the IUCr has taken the steps needed to ensure strict conformance with
this syntax.

The IUCr policy on the use of the CIF and STAR File processes is as follows:

• 1 CIFs and STAR Files may be generated, stored or transmitted, without
permission or charge, provided their purpose is not specifically for profit or
commercial gain, and provided that the published syntax is strictly adhered to.

• 2 Computer software may be developed for use with CIFs or STAR files,
without permission or charge, provided it is distributed in the public domain.
This condition also applies to software for which a charge is made, provided that
its primary function is for use with files that satisfy condition 1 and that it is
distributed as a minor component of a larger package of software.

• 3 Permission will be granted for the use of CIFs and STAR Files for
specific commercial purposes (such as databases or network exchange processes),
and for the distribution of commercial CIF/STAR software, on written
application to the IUCr Executive Secretary, 2 Abbey Square, Chester CH1 2HU,
England. The nature, terms and duration of the licences granted will be
determined by the IUCr Executive and Finance Committees.

In summary, the IUCr wishes to promote the use of the STAR File concepts as a
standard universal data file. It will insist on strict compliance with the published
syntax for all applications. To assist with this compliance, the IUCr provides
public domain software for checking the logical integrity of a CIF, and for
validating the data name definitions contained within a CIF. Detailed
information on this software, and the associated dictionaries, may be obtained
from the IUCr Office at 5 Abbey Square, Chester CH1 2HU, England.

CIFtbx Primer Plus Page - 80 Release 2.6

APPENDIX B

Installation of CIFtbx

Quick Installation

Here is the recommended procedure for implementing CIFtbx2 summarized for
experienced users:

1. Create and populate a directory named ciftbx_2.6
1.1. Obtain the ciftbx release kit, ciftbx.cshar and place it in

ciftbx_2.6
1.2. Unpack ciftbx.cshar
1.3. Obtain the dictionaries and place them in

ciftbx_2.6/dictionaries
in compressed format

1.4. Make listings
2. Build CIFtbx2

2.1. Go to ciftbx.src by ‘cd ciftbx.src’.
2.2. Adjust Parameters, if necessary
2.3. Make the routines by ‘make all’.

3. Test CIFtbx2
3.1. Run the tests by ‘make tests’.
3.2. Examine the test output

Detailed Installation Instructions

The terminology we will use in these instructions is for Unix systems, using the
C-shell. For non-Unix systems, different file names and system commands will
have to be used.

1. Create and populate a directory named ciftbx_2.6

Normally, CIFtbx2 is used partially as a source-code library, for common header
code to include, and partially as an object code library for linking. If you are the
system manager installing CIFtbx2 for a group of users, CIFtbx2 should be
installed in a directory to which all users have read access. If you are installing
CIFtbx2 for yourself, create a directory within your own directory tree. During
installation it is best to create the directory with a unique name, not conflicting
with that of any prior version. We will need to reference the directory you chose,
so we will treat it as having been assign to a variable named ‘CIFtbx2’, which
we will refer to as a Unix-style environment variable ‘$CIFtbx2’. So, if you are
system manager, you might

cd /usr/local
mkdir ciftbx_2.6

CIFtbx Primer Plus Page - 81 Release 2.6

setenv CIFtbx2 /usr/local/ciftbx_2.6

If you are installing CIFtbx2 for yourself, you might

cd
mkdir ciftbx_2.6
setenv CIFtbx2 ~/ciftbx_2.6

1.1. Obtain the ciftbx release kit, ciftbx.cshar and place it in ciftbx_2.6

Release kits for CIFtbx2 can be obtained from several places. They are available
from the IUCr and its mirror sites, the NDB and its mirror sites and from the
authors. For each indicated geographical area, the best locations on the Web
from which to obtain CIFtbx2 are:

Europe:
http://www.iucr.org/iucr-top/cif

(IUCr, Chester, England)
http://www.ebi.ac.uk/NDB/mmcif/software

(NDB mirror site at EBI near Cambridge, England)
http://www.se.iucr.org/iucr-top/cif

(IUCr mirror site at University of Stockholm, Stockholm, Sweden)
http://www.fr.iucr.org/iucr-top/cif

(IUCr mirror site at University Pierre et Marie Curie, Paris, France)

United States:
http://ndbserver.rutgers.edu/NDB/mmcif/software

(NDB, Rutgers University, New Brunswick, New Jersey, USA)
http://iucr.sdsc.edu/iucr-top/cif

(IUCr mirror site at San Diego Supercomputing Center, San Diego,
California, USA)

http://www.bernstein-plus-sons.com/software/ciftbx
(Bernstein + Sons remote web site at Pair Networks, Pittsburgh,
Pennsylvania, USA)

South Africa:
http://www.za.iucr.org;/iucr-top/cif

(IUCr mirror site at Dept. Structural Chemistry, Univ. Witwatersrand,
South Africa)

Asia:
http://ndbserver.nibh.go.jp/NDB/mmcif/software

(NDB mirror site at Structural Biology Centre, NIBH Japan)

Australia:
http://www.crystal.uwa.edu.au/~yaya/software/cc_star.html

(Crystallography Centre, University of Western Australia,
Nedlands, Australia)

The release kit you fetch may be a compressed C-shell archive, ciftbx.cshar.Z
or a compressed shell archive, ciftbx.shar.Z. You only need one of them, but

CIFtbx Primer Plus Page - 82 Release 2.6

whichever one you fetch, be certain to uncompress it. You may also fetch the
uncompressed kits directly, but that will greatly increase the transmission time.
In any case, you want to end up with either ciftbx.cshar or ciftbx.shar in
the directory $CIFtbx2.

1.2. Unpack ciftbx.cshar

WARNING: The files in this kit will unpack into a directory named
ciftbx.src. It is a good idea to save the current contents of ciftbx.src and then
to make the directory empty.

If you are in a Unix system, unpacking the kit is simple. Follow the instructions
at the front of the archive, i.e.

cd $CIFtbx2
csh ciftbx.cshar

or, if you have ciftbx.shar

cd $CIFtbx2
sh ciftbx.shar

This will create two new directories (ciftbx.src and dictionaries) as
subdirectories of $CIFtbx2 and install the following files:

 $CIFtbx2/mkdecompln decompression script used by Makefile
 $CIFtbx2/rmdecompln cleanup script used by Makefile
 $CIFtbx2/ciftbx.src/README.ciftbx

instructions on how to build CIFtbx
 $CIFtbx2/ciftbx.src/MANIFEST

 a list of files in the kit
 $CIFtbx2/ciftbx.src/Makefile

a preliminary control file for make
 $CIFtbx2/ciftbx.src/ciftbx.cmf

CIFtbx function definitions for applications
 $CIFtbx2/ciftbx.src/ciftbx.cmn

CIFtbx common for inclusion into
applications

 $CIFtbx2/ciftbx.src/ciftbx.cmv
CIFtbx common variables only

 $CIFtbx2/ciftbx.src/ciftbx.f
CIFtbx Fortran source

 $CIFtbx2/ciftbx.src/ciftbx.sys
CIFtbx common for inclusion into ciftbx.f

 $CIFtbx2/ciftbx.src/clearfp.f
dummy routine holding place for
clearfp_sun.f

 $CIFtbx2/ciftbx.src/clearfp_sun.f
SUN routine to clear floating point
exceptions

 $CIFtbx2/ciftbx.src/hash_funcs.f
hash-table control routines used by CIFtbx

CIFtbx Primer Plus Page - 83 Release 2.6

 $CIFtbx2/ciftbx.src/mtest.out
CIF output by the tbx_exm.f run

 $CIFtbx2/ciftbx.src/mtest.prt
print file output from tbx_exm.f run

 $CIFtbx2/ciftbx.src/tbx_ex.f
example application used against cif_core.dic

 $CIFtbx2/ciftbx.src/tbx_exm.f
example application used against
cif_mm.dic

 $CIFtbx2/ciftbx.src/test.cif
example CIF used by tbx_ex.f

 $CIFtbx2/ciftbx.src/test.out
CIF output from tbx_ex.f run

 $CIFtbx2/ciftbx.src/test.prt
print file output from tbx_ex.f run

 $CIFtbx2/ciftbx.src/test.req
example request file used by tbx_ex.f

Check that each file has been installed in the correct location in the directory tree.
If there has been a problem (usually because file with the same name was found)
move the offending file to a safe place, empty out the directory and unpack
again.

IF YOU DON'T HAVE UNIX

If sh or csh are not available, then it is best to start with the "C-Shell Archive",
ciftbx.cshar and do the steps that follow. If you must use the "Shell Archive",
ciftbx.shar you should be aware that the lines you want to extract have been
prefixed with "X", while most of the lines you want to discard have not. For a "C-
Shell Archive" such prefixes are rare and the file is easier to read. Assume you
have a "C-Shell Archive".

Use your editor to separate the different parts of the file into individual files in
your workspace. Each part starts with a lot of Unixisms, then several blank lines
and then two lines that identify the file, and most importantly, contain the text

"CUT_HERE_CUT_HERE_CUT_HERE"

You can look at the line before and the line after to see if you are at the head or
tail of a file. Use your editor to search for the "CUT_HERE" lines. Each part is
carefully labeled and indicates the recommended filename for the separated file.
On some machines these filenames may need to be altered to suit the OS or
compiler. (e.g. on MS/DOS PC's you may want to change 'hash_funcs.f' to
something like 'hashfunc.for'). Even though this particular release has no lines for
which an "X" prefix is used within a file, be warned that, in general, you should
look for lines that start with "X" and remove the "X". Put each file in the places
noted above.

1.3. Obtain the dictionaries and place them in
ciftbx_2.6/dictionaries

in compressed format

CIFtbx Primer Plus Page - 84 Release 2.6

WARNING: To test CIFtbx, you must have the dictionaries cif_core.dic.Z
and cif_mm.dic.Z in compressed form installed in a directory named
dictionaries.

You can obtain the two dictionaries used for testing over the Web. The latest
version of cif_core.dic, the core dictionary, can be obtained from the IUCr
web server

http://www.iucr.ac.uk

or its mirror sites, and the latest version of cif_mm.dic, the mmCIF dictionary,
can be obtained from the mmCIF web page at

http://ndbserver.rutgers.edu/NDB/mmcif

or its mirror sites. The dictionaries used in the test cases provided with CIFtbx2
are available from the same sites that provide the release kit.

You may obtain the dictionaries in compressed or uncompressed form, but the
standard CIFtbx2 tests work from the compressed form, so be careful to finish
installing the dictionaries by leaving them in compressed form.

1.4. Make Listings

Once you have separated out these files, list ciftbx.f, Makefile,
hash_funcs.f, tbx_exm.f and tbx_ex.f in particular (all if possible!) and
carefully read the descriptions in the front of these files. Remember that
tbx_ex.f and tbx_exm.f are only examples of CIF applications -- they show
how some basic CIF operations can be performed, but they are not necessarily
sensible or typical of what an actual application would look like!

WARNING -- if you are running on a SUN, or other system which treats floating
point underflows as an error, you may wish to list clearfp_sun.f

2. Build CIFtbx2

2.1. Go to ciftbx.src by ‘cd $CIFtbx2/ciftbx.src’.

The entire build of CIFtbx2 is done in the directory $CIFtbx2/ciftbx.src,
even though some of the files needed are elsewhere. The build instructions
assume that the scripts mkdecompln and rmdecompln are in $CIFtbx2 and that
the compressed dictionaries are in $CIFtbx2/dictionaries. If you are
working on a non-Unix system, vary this according to the requirements of your
OS and compiler. You will find it simplest to work if you place the CIFtbx2 files
together in a common subdirectory named ciftbx.src. Be very careful if you
place them in a directory with other files, since some of the build and test

CIFtbx Primer Plus Page - 85 Release 2.6

instructions remove or overwrite existing files, especially with extensions such as
.o, .lst, .diff or .new.

WARNING: If you are running on a SUN or similar system that treats floating
point underflow as an error, you may need to use clearfp_sun.f Please read
the following paragraph carefully.

Before building the code, you may wish to replace the file clearfp.f with code
appropriate to your system. The routine is called by CIFtbx2 to clear possible
floating point underflows which may be generated when the code attempts to
find the number of digits of precision supported on your system. No special
action is required to clear an underflow on many systems, but on a SUN, for
example, execution of the code to test machine precision generates messages
about underflow and inexact arithmetic. On a SUN, these messages may be
avoided by replacing clearfp.f by clearfp_sun.f. On other machines
sensitive to underflow, you may have to use other (usually similar) code.
2.2. Adjust Parameters

For most purposes, the default values of the parameters in CIFtbx2 are
satisfactory. However, when working with very large dictionaries or on
computers with limited memory, it may be necessary to adjust some of the
parameters that control the sizes of various arrays. If changes are necessary, the
parameters can be found in ciftbx.cmv and ciftbx.sys. In order for changes
to take effect, all code should be recompiled after the changes are made.

NUMHASH (default 53)

In the conversion from CIFtbx to CIFtbx2, there were two issues to address in the
changes in size of the dictionary and of names: allocating appropriate storage
and preserving efficiency of the code execution. New parameters were
introduced for the size-dependent changes, so that future changes can go more
smoothly. Efficiency is achieved by extensive use of hash-table-controlled lists.
The routines used can be found in hash_funcs.f. Ordinarily the user should
not have to deal directly with these routines. The only change that might be
made for tuning would be to adjust the parameter NUMHASH in ciftbx.sys.
This is presently set 53, which would mean, for up to 3200 names, typical
searches for name matches would look at sub-lists to less than approximately 61
names. Greater timing efficiency can be achieved at a slight expense in memory
by increasing NUMHASH to some larger number. It is recommended that a prime
be used for best efficiency in distribution of names among sub-lists.

NUMCHAR (default 48)

The maximum number of characters in a data name is set by NUMCHAR. This is
sufficient for all presently available dictionaries, but it is possible that names of
up to 76 characters could be defined. If longer names must be processed, increase
the parameter.

CIFtbx Primer Plus Page - 86 Release 2.6

NUMDICT (default 3200)

The cumulative total number of names in all dictionaries loaded must be less
than or equal to NUMDICT. Increase this number if many dictionaries must be
loaded simultaneously.

NUMBLOCK (default 500)

CIFtbx2 processes each data block independently and loads information about all
the names in the data block currently being processed into arrays, the size of
which are controlled by NUMBLOCK. Increase this parameter if a single data block
might contain more than 500 names.

NUMLOOP (default 50)

The maximum number of loops in a data block is controlled by the parameter
NUMLOOP. Increase this number if any data block to be processed may contain
more than 50 loops.

NUMITEM (default 50)

The maximum number of items in a single loop is controlled by the parameter
NUMITEM. Increase this number if any loop to be processed may contain more
than 50 data item tags in its header.

MAXBUF (default 200)

The maximum number of characters in a line to be read is controlled by the
parameter MAXBUF. While valid CIFs can only have 80 columns on a line, CIFtbx2
can be used to process files with longer lines. Increase MAXBUF if line to be
processed may contain more than 200 characters.

NUMPAGE (default 10)
NUMCPP (default 16384)
CIFtbx attempts to reduce the number of disk access to the direct access file by
grouping lines into large pages and by holding several pages in memory. The
number of memory resident pages of the direct access file is controlled by the
parameter NUMPAGE. The number of characters in each page is controlled by the
parameter NUMCPP. It is essential that NUMCPP be larger than MAXBUF, i.e. large
enough to hold at least one line of the input CIF. It is desirable that NUMCPP be
large enough to hold several lines, and that it be a multiple of the block sizes of
disk drives used. Naturally, more memory will be required by CIFtbx if larger
values of NUMPAGE are used, but there will be less demand for disk access.

2.3. Make the routines by ‘make all’.

On a Unix system, most of what you need to do to build and test CIFtbx2 is laid
out in $CIFtbx2/ciftbx.src/Makefile. Be sure to examine and edit this

CIFtbx Primer Plus Page - 87 Release 2.6

file appropriately before using it. But, once properly edited, all you should
need to do is

make clean

to remove old object files, and

make all

to build new versions of ciftbx.o, etc. Later we will

make tests

to test what you have built. Note that the Makefile takes some initial action to
force mkdecompln and rmdecompln to be executable. See the section marked
postshar.

If you don't wish to use the Makefile or can't, then here are the essential steps to
build CIFtbx2:

(a) compile tbx_ex.f [note that provided the Fortran “include” function
is available to you, the files ciftbx.f, ciftbx.sys, hash_funcs.f,
ciftbx.cmn, ciftbx.cmf and ciftbx.cmf will be automatically
opened and processed by this single operation]

(b) link tbx_ex.o as the executable file tbx_ex

(c) compile tbx_exm.f, ciftbx.f, and hash_funcs.f

(d) link tbx_exm.o, ciftbx.o and hash_funcs.o as the executable file
tbx_exm

3. Test CIFtbx2

To execute the supplied example applications tbx_ex.f and tbx_exm.f
identically to the test outputs supplied, a copy of the CIF Core Dictionary
cif_core.dic and of the macromolecular CIF dictionary version 0.9.01
cif_mm.dic must be available in your work area. If they are not the tests will
proceed with a warning message but no validations checks will occur. See
section 1.3, above. Once you have all both dictionaries, compress them, and edit
the definitions of MMDICPATH and COREDICPATH in Makefile to agree with the
permanent locations of the formerly uncompressed dictionaries. The Makefile
will create local soft links to temporary uncompressed copies of the dictionaries.
If you can afford the space for permanent uncompressed copies, change the
definition to EXPAND in Makefile to a non-temporary directory, such as '.'

3.1. Run the tests by ‘make tests’.

The tests can be run the your output compared to the expected output by

CIFtbx Primer Plus Page - 88 Release 2.6

cd $CIFtbx2/ciftbx.src
make tests

If you cannot use the Makefile, here are the steps to run the tests:

(e) execute tbx_ex so that the list file test.lst is connected to device 6
(stdout). The input CIF test.cif and the output CIF test.new will be
automatically opened. For a Unix OS the command will look like this:

tbx_ex > test.lst

(f) execute tbx_exm so that the list file mtest.lst is connected to device
6 (stdout). The input CIF test.cif and the output CIF mtest.new will
be automatically opened. For a Unix OS the command will look like this:

tbx_exm > mtest.lst

3.2. Examine the test output

If you used the Makefile and the run produced no differences you are done.
However, there may be differences between the expected output and your own
run. One common case that should cause no concern arises from the way some
systems present floating point numbers. Some systems present numbers in the
form .123 or -.456, while others insert a leading zero with 0.123 and -0.456. This
should not happen in any of the CIFs written by CIFtbx2 ,since this behavior is
controlled by the package, but the list outputs are not so constrained, and such
differences may happen.

Here is what you may need to examine:

(g) to check that the test has been successful, compare the files that you
have generated test.lst with the supplied test.prt, and test.new
with test.out. They should be identical (except for the matter of leading
zeros noted above).

(h) to check that the mmCIF test has been successful compare the files that
you have generated mtest.lst with the supplied mtest.prt, and
mtest.new with mtest.out. They should be identical, except as noted
above.

Reporting Problems

If you have any problems installing CIFtbx2 please contact:

Herbert J. Bernstein
em: yaya@bernstein-plus-sons.com,
ph: 1-516-286-1339, fax: 1-516-286-1999

or

CIFtbx Primer Plus Page - 89 Release 2.6

Syd Hall
em: syd@crystal.uwa.edu.au
fx: 61(9)3801118

CIFtbx Primer Plus Page - 90 Release 2.6

APPENDIX C

CYCLOPS2: a full CIFtbx application
CYCLOPS2 [Bernstein, Hall 97]is a new version of the program CYCLOPS [Hall
93] which is used, in conjunction with CIF dictionaries, to validate data names in
an ASCII file which may contain CIF or non-CIF data, text documents or a
program source. The new version is able to work with DDL1 or DDL2
dictionaries, the long data names of mmCIF dictionaries and with multiple
dictionaries. CYCLOPS2 is written incorporating the CIFtbx2 [Hall, Bernstein 96]
library of Fortran functions and is portable to a variety of platforms. CYCLOPS2
is available along with CIFtbx2.

CYCLOPS is used primarily for checking spelling of CIF data names in
documents and program sources against those in a CIF dictionary. It is also used
to self-check a CIF dictionary for consistent definitions and cross-references.

Since the development of CYCLOPS in 1992 the CIF approach has been applied to
new areas such macromolecular structural data. The mmCIF dictionary
[Fitzgerald, Berman, Bourne, McMahon, Watenpaugh and Westbrook 96 and
Bourne, Berman, McMahon, Watenpaugh and Westbrook 96] defines the
structural parameters used in macromolecular studies and invokes an extended
dictionary definition language referred to as DDL2 [Westbrook and Hall 95].
DDL2 involves stronger relational attributes than the DDL [Hall, Cook 95] used
for the core crystallographic dictionary. CYCLOPS2 can process dictionaries
using either DDL or DDL2, as well as the longer data names of mmCIF, whereas
the earlier CYCLOPS is limited to dictionaries using the simpler DDL attributes
and 32 character names. CYCLOPS2 uses the CIFtbx2 library functions to
perform the dictionary reading and CIF parsing operations.

Because of the increasing size of CIF dictionaries (the mmCIF dictionary alone
adds nearly 1500 new data names not found in the core crystallographic
dictionary) CYCLOPS2 outputs the validation information quite differently from
CYCLOPS . It lists the data names encountered in the validated file and
dictionary files in three separate categories, the last one of which is optional: first
output are the data names that are unrecognised (i.e. encountered in the
validated file but not in the dictionary), second are the names that are present in
both the validated file and the dictionary; and third, if requested, are the names
encountered in the dictionary but not in the validated file. Aliased data names
are also listed.

CYCLOPS2 overview

Files are read and written by CYCLOPS2 as follows:
File a The text file to be validated is read from the standard input device

(normally device 5). For Unix operating systems this is the file stdin;
on other systems CYCLOPS2 uses the file STARTEXT.

CIFtbx Primer Plus Page - 91 Release 2.6

File b The dictionary file or files are identified in the input text file STARDICT.
This file may itself be a DDL-conformant dictionary, or, if it begins with
the characters "#DICT", may list the filenames of dictionaries to be
entered, one per line. For Unix operating systems, this information
may be provided directly on the command line.

File c The validation report is output to the standard output device (normally
device 6). For Unix operating systems this is the file stdout; on other
systems CYCLOPS2 uses the file STARCHEK.

File d Messages are output to the standard error device stdout (normally
device 0). For Unix operating systems this is the file stderr; on other
systems CYCLOPS2 uses device 6 and the file STARCHEK

The dictionary names are gathered into an array XDICT and then opened in the
selected order in the following loop:

 do i = 1,kdict
 if(.not.dict_(XDICT(i)(1:max(1,lastnb(XDICT(i)))),prior))
 * call cerr(1,XDICT(i)(1:max(1,lastnb(XDICT(i))))//
 *' not found',' ')
 MDICT(i)=NDICT
 DICTNM(i)=dicname_
 DICTVR(i)=dicver_
 enddo

This is the critical use of CIFTBX2. Both DDL and DDL2 dictionaries can be
loaded with proper recognition of aliases between them. After that, CYCLOPS2
has the arrays of dictionary item names available to it.

The following procedure is used by CYCLOPS2 to check data names:

1. Read STARDICT (see File b above) and, based on the first line, make a
list of the dictionaries to be loaded. On Unix systems, add dictionaries specified
on the command line as -d dicname to the list of dictionaries.

2. Load the dictionaries and store all data names. Any dictionary
processing errors are reported to the error output file (see File d above).

3. Read the text file to be checked, parsing it line-by-line for identifiable
data names (i.e., text strings starting with the underscore character “_”). Data
names are recognized provided the name begins with an underscore and the
name is:

preceded by one of the characters <blank> <tab> , . ([{ < / \ | " ' : *
and

followed by one of the characters <blank> <tab> , .)] } > / \ | " ' - = ? ! ; : .
All alphabetic characters are converted to lower case. The scan stops at the
comment character, "#", and goes to the next line.

4. On encountering a data name in step 3, search the stored dictionary
names for a match. A match is attempted in one of three ways.

CIFtbx Primer Plus Page - 92 Release 2.6

• If the data name is not preceded by the asterisk character “*”, and it does
not end with the underscore character “_”, then search for an identical
match.

• If the data name ends with the underscore character “_”, then search for a
match in the dictionary where the leading characters in the dictionary name
are the same as all the characters in the data name found in the text. For
example, the text _atom_site.label_ would match the mmCIF
dictionary entry _atom_site.label_alt_id

• If the data name is preceded by the asterisk character “*”, then search for a
match in the dictionary where the trailing characters in the dictionary name
are the same as all the characters in the data name found in the text. The
first match found in the dictionary is accepted. For example, the text
*_alt_id would match _atom_site.label_alt_id, or, if that name
had not been in the dictionary, _struct_conn.ptnr1_label_alt_id

If one of the searches succeeds, add the line number of the data name to a list
attached to the dictionary name. Up to 19 line numbers are retained for each
dictionary name (the first 10 matches and the last 9). If a data name has been
misspelled it is likely to be caught at the next stage.

5. If no match is found, the unmatched data name is added to the a list of
unmatched names, along with the appropriate line number. If a data name has
been misspelled it will be caught at this step.

6. When the text file has been processed, output the validation report file
(see File d above) containing the alphabetically sorted list unmatched names and
line numbers, followed by the sorted list names from all dictionaries that are used
within the text, followed, if requested, by the sorted list of names from all
dictionaries that are not used within the text on the file. If a data name has an
alias defined in the dictionaries, a warning about the existence of the alias is
given. If more than one dictionary has been used, the source dictionary is
identified for each data name. Example extracts from a validation output file are
shown in Tables 1 and 2. A command line option is provided to suppress all but
the list of unmatched names.

CIFtbx Primer Plus Page - 93 Release 2.6

Table 1. Sample output at the start of a validation output file. Note that the mmCIF
dictionary, cifdic.m96, defines aliases for data names in the core dictionary,
cifdic.c94.

 CYCLOPS Check List

 Dictionary data names = 1997
 New data names in text = 4
 [1] Dictionary cifdic.c94 data names = 533
 [2] Dictionary cifdic.m96 data names = 1464

 Data names NOT in Dictionary Line Numbers

 _blat1 . 9 11 94 96
 181 183 290 296 302 308
 314
 _blat2 . 13 15 98 100
 185 187 287 293 299 305
 311
 _dummy_test . 5 7 90 92
 177 179 201
 _rubbish_here . 431

 [1] Dictionary cifdic.c94
 [2] Dictionary cifdic.m96
 Line Numbers

 [2] _atom_site.calc_attached_atom 413
 [1] = _atom_site_calc_attached_atom 412
 [2] _atom_site.calc_flag 410
 [1] = _atom_site_calc_flag 409
 [2] _atom_site.fract_x 38 44 50 390
 [1] = _atom_site_fract_x 389
 [2] _atom_site.fract_y 39 45 51 394
 [1] = _atom_site_fract_y 393
 [2] _atom_site.fract_z 40 46 52 398
 [1] = _atom_site_fract_z 397
 [2] _atom_site.id 37 43 49 386
 [1] = _atom_site_label 385
 [2] _atom_site.thermal_displace_type 406
 [1] = _atom_site_thermal_displace_type 405
 [2] _atom_site.type_symbol 416 420 424 428
 434 438 442 450 454 458
 462
 [1] = _atom_site_type_symbol 415 419 423 427
 433 437 441 449 453 457
 461

CIFtbx Primer Plus Page - 94 Release 2.6

Table 2. Sample output still later in a validation output file, showing the transition to
unreferenced data names.

 [1] _symmetry_cell_setting 319
 [2] = _symmetry.cell_setting 320
 [1] _symmetry_space_group_name_H-M 323
 [2] = _symmetry.space_group_name_H-M 324
 [1] _symmetry_space_group_name_Hall 327 445
 [2] = _symmetry.space_group_name_Hall 328 446

 [1] Dictionary cifdic.c94
 [2] Dictionary cifdic.m96
 Names Not Referenced

 [2] _atom_site.aniso_B[1][1]
 [2] _atom_site.aniso_B[1][1]_esd
 [2] _atom_site.aniso_B[1][2]
 [2] _atom_site.aniso_B[1][2]_esd

 [... portion of output omitted ...]

 [2] _atom_site.aniso_U[2][3]
 [2] _atom_site.aniso_U[2][3]_esd
 [2] _atom_site.aniso_U[3][3]
 [2] _atom_site.aniso_U[3][3]_esd
 [2] _atom_site.attached_hydrogens
 [1] = _atom_site_attached_hydrogens
 [2] _atom_site.auth_asym_id
 [2] _atom_site.auth_atom_id
 [2] _atom_site.auth_comp_id
 [2] _atom_site.auth_seq_id
 [2] _atom_site.B_iso_or_equiv
 [1] = _atom_site_B_iso_or_equiv
 [2] _atom_site.B_iso_or_equiv_esd
 [2] _atom_site.cartn_x
 [1] = _atom_site_Cartn_x
 [2] _atom_site.cartn_x_esd
 [2] _atom_site.cartn_y
 [1] = _atom_site_Cartn_y
 [2] _atom_site.cartn_y_esd

 [... remainder of output omitted ...]

CIFtbx Primer Plus Page - 95 Release 2.6

Error Message Glossary

In addition to the error messages reported by the CIFtbx2 library routines when
processing dictionaries, CYCLOPS2 can output the following error messages.

Data name in text is > NUMCHAR chars <string>
A non-fatal warning issued if the length of a data name in the validated file
exceeds the preset value of NUMCHAR. Processing continues with a truncated
name. The value of NUMCHAR should be changed in ciftbx.sys and
ciftbx.f recompiled.

Dictionary list empty
The file STARDICT does not contain definitions or a list of dictionary filenames,
and none were specified on the command line. See File a description above.

Too many dictionaries
More than 99 dictionaries have been added to the list of dictionaries. This is
almost certainly due to an error in constructing the file STARDICT. In any case
CYCLOPS2 cannot process more than 99 dictionaries. If many small dictionaries
must be handled, break them up into groups of less than 100.

<dictionary name> not found
The dictionary file named in STARDICT or on the command line could not be
opened.

Data name table exceeded (Current max is NUMDICT)
The combined number of data names in the dictionaries and the text is greater
than the parameter NUMDICT defined in ciftbx.sys. Recompile with a larger
value of NUMDICT.

Distribution

The latest version of this software is available as part of the CIFtbx2 (see Appendix
A).

CIFtbx2 distributed as the file ciftbx.cshar. CYCLOPS2 is distributed as the
companion file cyclops.cshar. There are several dictionaries that are useful
for validation. In general the latest versions can be traced by starting at the IUCr
CIF web page at:

http://www.iucr.org/iucr-top/cif/
or one of its mirror sites (see Appendix A).

CIFtbx Primer Plus Page - 96 Release 2.6

APPENDIX D

Syntax of a STAR File

Let us look more carefully at the syntax of a STAR file. A “String” is one or more
printable ANSI/ISO characters, including blank or tab. A “starString” is a string of
one or more printable characters not beginning with an underscore, hash-mark or
dollar sign, not containing a blank or tab, and not matching one of the special words
listed above. White space consists of blanks, tabs or comments. Except when
identifying names with underscore, data_, save_ or a dollar sign, white space must
always separate the tokens in STAR, which means that the same white space does
double duty ending one syntax element and starting another. To keep the syntax
descriptions as simple as possible, we indicate the mandatory presence of white space
(or, in the case of a semicolon, of an end of line) which is part of the context of a
syntactic element, but which may be part of another syntactic element by shading the
background.

whiteSpace = blank | tab | blank | tab { }# String{ }
0

1{ }
0

1

eol

 1

∞

We make a STAR file out of a series of blocks separated by whitespace:

STARfile = whiteSpace{ }
0

1
block whiteSpace{ }

0

∞

In a STAR file, a block may be an un-named global_ block or a named data_ block:

block = global_ Block | data_ Block

global_ Block = global_ whiteSpace blockBody

data_ Block = data_ name whiteSpace blockBody

global_ = g | G{ } l | L{ } o | O{ } b | B{ } a | A{ } l | L{ }_

data_ = d | D{ } a | A{ } t | T{ } a | A{ }_

In a CIF there are no global_ blocks, but they are used in dictionaries. The body of
a block consists of white space separated tag-value pairs, loops and save_ frames.
Save_ frames are not used in CIF, but they are used in the mmCIF dictionary.

blockBody =

 tag whiteSpace value | loop | save_ Frame{ } whiteSpace { }
0

∞

A save_ frame is very similar to a data_ block, but it cannot contain an embedded
save_ frame, and it must be terminated by a save_.

CIFtbx Primer Plus Page - 97 Release 2.6

save_ Frame = save_ name whiteSpace frameBody whiteSpace save_

frameBody =

 tag whiteSpace value | loop{ } whiteSpace { }
0

∞

save_ = s | S{ } a | A{ } v | V{ } e | E{ }_

A loop consists of loop_, whitespace, the header for the loop giving the tags that
label the columns of the table being specified, and then the body of the loop giving
one or more rows of values to be associated with the tags in the header. STAR
permits nested loops, with appropriately aligned sublists in the header and body
delimited by stop_ CIF does not permit any nesting, and stop_ is not used. STAR
also permits a value to be a “frame code”, a reference to a save_ frame indicated by a
dollar sign before the name of the save_ frame. The feature is not used in CIF. The
values are starStrings, or quoted strings. Note that the initial end of line (eol) is part
of the context of the initial delimiter and part of the prior white space.

loop = loop_ whiteSpace loopHeader loopBody

loopHeader =

 tag | loop_ whiteSpace loopHeader whiteSpace stop_{ } whiteSpace{ }
1

∞

loopBody = value | stop_{ } whiteSpace{ }
1

∞

value =

 starString | ' String ' | " String " | eol ; String{ }
0

1
eol{ }

1

∞
; | $ name

loop_ = l | L{ } o | O{ } o | O{ } p | P{ }_

stop_ = s | S{ } t | T{ } o | O{ } p | P{ }_

CIFtbx Primer Plus Page - 98 Release 2.6

APPENDIX E

Internals and Programming Style

CIFtbx is programmed in a highly portable Fortran programming style.
However, on some older systems, some adaptation may be necessary to allow
compilation. Implementors should be aware of the extensive use of variables in
common blocks to transmit information and control execution (programming by
side-effects), the use of the INCLUDE statement, use of the ENDDO statement, the
names of routines used internally by the package, use of names longer than six
characters and use of names including the underscore character.

Some aspects of the internal organization of the library to deal with
characteristics of CIFs are worth noting. CIFtbx copies an input CIF to a direct
access (i.e. random access) file, but writes an output CIF directly. All data names
are converted to lower case to deal with the case-insensitive nature of CIF. A
hierarchy of parsing routines is used to deal processing whitespace.

Programming Style

A traditional Fortran style of programming is used in CIFtbx. Common blocks
are declared to report and control the state of the processing. This allows
argument lists to be kept short and avoids the need to create complex data
structure types, but introduces extensive "programming by side-effects". In order
to reduce the impact of this approach on users, two different views of the
common blocks are provided. The declarations in ciftbx.cmn are needed by all
users. The more extensive declarations in ciftbx.sys, which include the same
common declarations as are found in ciftbx.cmn and additional declarations
used internally within CIFtbx, are provided for use in maintaining the library.
Caution is needed in making internal modifications to the library to maintain the
desired relationships among the actions of various routines and the states of
variables declared in the common blocks.

The variables declared in ciftbx.cmn are organized into three labeled common
blocks:

CIFtbx Primer Plus Page - 99 Release 2.6

 common /tbuc/ strg_, bloc_, file_, type_, dictype_,
 * diccat_, dicname_, dicver_, tagname_, quote_,
 * pquote_, tbxver_
 common /tbui/ list_, long_, longf_, line_, esdlim_,
 * recn_, precn_, posnam_, posval_, posdec_,
 * posend_, pposnam_, pposval_, pposdec_, pposend_,
 * recbeg_, recend_
 common /tbul/ loop_, text_, align_, save_, saveo_,
 * aliaso_, alias_, tabl_, tabx_, ptabx_, nblank_,
 * nblanko_, glob_, globo_, decp_, pdecp_, lzero_,
 * plzero_, append_

The blocks with labels /tbuc/, /tbui/, and /tbul/ are for variables of type
character, integer and logical respectively. The additional internal variables
declared in ciftbx.sys are similarly organized into labeled common blocks,
/tbxc/, /tbxi/, /tbxdp/, /tbxr/, and /tbxl/ for variables of type character,
integer, double precision, real and logical, respectively. Portability is enhanced
not mixing common for variables of different types.

Statements are written in the first 72 columns of a line, reserving columns one
through five for statement labels and using column six for continuation.
Approaches that would require the use of C-libraries or non-portable Fortran
extensions are avoided. For this reason, all the internal service routines are
written in Fortran, all memory needed is preallocated with DIMENSION
statements and a direct access file is used to hold the working copy of a CIF.

Memory Management

Since CIFtbx does static memory allocation with DIMENSION statements, it is
sometimes necessary to adjust the array dimensions chosen to suit a particular
application. It may also be necessary to increase the storage allocated for
individual tags to allow for unusually long ones.

The sizes of most arrays and strings used in CIFtbx that might require adjustment
are controlled by PARAMETER statements in the files ciftbx.sys and
ciftbx.cmv (the variable declaration portion of ciftbx.cmn). The parameters
are:

NUMCHAR Maximum number of characters in data names (default 48)

MAXBUF Maximum number of characters in a line (default 200)

NUMPAGE Number of memory resident pages (default 10)

NUMCPP Number of characters per page (default 16384)

NUMDICT Number of entries in dictionary tables (default 3200)

NUMHASH Number of hash table entries (a modest prime, default 53)

NUMBLOCK Number of entries in data block tables (default 500)

CIFtbx Primer Plus Page - 100 Release 2.6

NUMLOOP Number of loops in a data block (default 50)

NUMITEM Number of items in a loop (default 50)

MAXTAB Maximum number of tabs in output cif line (default 10)

MAXBOOK Maximum number of simultaneous bookmarks (default 1000)

These values can result in CIFtbx requiring more than a megabyte of memory.
On smaller machines working with a small dictionary and simple CIFs,
considerable space can be saved by reducing the values of NUMDICT and
NUMBLOCK.

On the other hand, an application working with several layered dictionaries and
large and complex CIFs with many data items and many loops in a data block
might require a version of CIFtbx with larger values of NUMDICT, NUMBLOCK and,
perhaps, of NUMLOOP.

The variables NUMPAGE and NUMCPP control the amount of memory to be used to
buffer the direct access file and size of the data transfers to and from that file.
Smaller values will reduce the demand for memory at the expense of slower
execution.

Use of INCLUDE

The INCLUDE statement allows the statements in the specified file to be treated as
if they were being included in a program in place of the INCLUDE statement itself.
This simplifies the maintenance of common block declarations, and is an
important tool in keeping code well-organized. In CIFtbx, the INCLUDE
statement is used to bring the statements in the files ciftbx.cmn and
ciftbx.sys into programs where they are needed, and to simplify
ciftbx.cmn and ciftbx.sys by using INCLUDEs of the files ciftbx.cmv and
ciftbx.cmf. The file ciftbx.cmv contains the definitions of the essential
CIFtbx data structures as common blocks, for inclusion in both ciftbx.cmn for
user applications and in ciftbx.sys for the CIFtbx library routines themselves.
Most compilers handle the INCLUDE statement, but, if necessary, a user may
replace any or all of the INCLUDE statements with the contents of the indicated
file. For example, the only non-comments in ciftbx.cmn are

 include 'ciftbx.cmv'
 include 'ciftbx.cmf'

This means that the file ciftbx.cmn could be replaced by a concatenation of the
two files ciftbx.cmv and ciftbx.cmf.

The system common, ciftbx.sys contains

 include 'ciftbx.cmv'

CIFtbx Primer Plus Page - 101 Release 2.6

but not the type declarations in ciftbx.cmf in order to avoid an excessive
number warning messages about unreferenced variables produced by some
compilers.

Use of ENDDO

CIFtbx makes some use of the ENDDO statement (as well as nested IF, THEN, ELSE,
ENDIF constructs) to improve readability of the source code. Most compilers
accept the ENDDO statement, but if conversion is needed, then constructs of the
form:

 do index = istart, iend, incr
 ...
 enddo

should be changed to

 do nnn index = istart, iend, incr
 ...
nnn continue

where nnn is a unique statement number, not used elsewhere in the same routine.

Names of Internal Routines

The following routines are used internally by CIFtbx version 2.6. If these names
are needed for other routines, then changes in the library will be needed to avoid
conflicts.

Variable Initialization:

 block data

Critical CIFtbx variables are initialized with data statements in a block data
routine.

Control of Floating Point Exceptions:

 subroutine clearfp

If a system requires special handling of floating point exceptions, the necessary
calls should be added to this subroutine.

Message Processing:

 subroutine err (mess)
 character mess*(*)
 subroutine warn (mess)
 character mess*(*)
 subroutine cifmsg (flag, mess)
 character mess*(*), flag*(*)

CIFtbx Primer Plus Page - 102 Release 2.6

Error and warning messages are processed through these three routines.

Internal Service Routines:

 subroutine dcheck (name, type, flag, tflag)
 logical flag, tflag
 character name*(*), type*4
 subroutine eotext
 subroutine eoloop
 subroutine excat (sfname, bcname, lbcname)
 character*(*) sfname, bcname
 integer lbcname
 subroutine getitm (name)
 character name*(*)
 subroutine getstr
 subroutine getlin (flag)
 character flag*4
 subroutine putstr (string)
 character string*(*)

These routines are used internally by the library. The subroutine dcheck
validates names against dictionaries. The subroutines eotext and eoloop are
used to ensure termination of loops and text strings. The subroutines getitm,
getstr, and getlin extract items, strings and lines from the input CIF. The
subroutine putstr writes strings to the output CIF.

Numeric Routines

 subroutine ctonum
 subroutine putnum (numb, sdev, prec)
 double precision numb, sdev, prec

The routine ctonum converts a string to a number and its esd. The subroutine
putnum converts a number and esd to an output string.

String Manipulation

 subroutine detab
 integer function lastnb (str)
 character str*(*)
 character*(MAXBUF) function locase (name)
 character name*(*)

The subroutine detab converts tabs to blanks. The function lastnb finds the
column position of the last non-blank character in a string. The function locase
converts a string to lower case.

Hash Table Processing

 subroutine hash_find (name, name_list, chain_list,
 * list_length, num_list, hash_table, hash_length,
 * ifind)
 character name*(*), name_list(list_length)

CIFtbx Primer Plus Page - 103 Release 2.6

 integer hash_length, chain_list(list_length),
 * hash_table(hash_length), ifind
 subroutine hash_store (name, name_list, chain_list,
 * list_length, num_list, hash_table, hash_length,
 * ifind)
 character name*(*),
 * name_list(list_length)
 integer hash_length, chain_list(list_length),
 * hash_table(hash_length), ifind
 integer function hash_value (name, hash_length)
 character name*(*)
 integer hash_length

These routines are used to manipulate the internal hash tables used by the
library.

Use of the Underscore Character

All the externally accessible CIFtbx commands and variable terminate with the
underscore character. This works well on most systems, but can cause occasional
problems, since traditional Fortran does not include the underscore in the
character set and some operating systems reserve the underscore as a system flag,
for example to distinguish C-language library routines from those written in
Fortran. If conversion is needed, and the local compiler allows long variable and
subroutine names, then the simplest approach would be to make a local variant
of CIFtbx in which every occurrence of underscore in a function, subroutine or
variable names was changed to a distinctive character pattern (e.g. "CIF" or "qq"),
but caution is needed, since there are many character strings used in the library
that include the underscore. For example, in changing the variable loop_ to
loopCIF, it would be a mistake to change the statement

 if(strg_(1:5).eq.'loop_')
 type_='loop'

to

 if(strg_(1:5).eq.'loopCIF')
 type_='loop'

Names Longer than Six Characters

CIFtbx uses some function, subroutine and variable names longer than six
characters to improve readability, but, in most cases, consistent truncation of all
uses of a name to six characters will not cause any problems.

File Management

CIFtbx allows the user to read from one CIF while writing to another. The input
CIF is first copied to a direct access file to allow random access to desired
portions of the input CIF. Since CIF allows data items to be presented in any
order, the alternatives to the use of a direct access file would have been to create
memory-resident data structures for the entire CIF or to track position and make

CIFtbx Primer Plus Page - 104 Release 2.6

multiple search passes through the file as data items were requested. When
programming for personal and laboratory computers with limited memory and
which may lack virtual memory capabilities, assuming the availability of enough
memory for large CIFs would greatly restrict the applications within which
CIFtbx could be used. However, the disk accesses involved in using a direct
access file slow execution. When working on larger computers, execution speed
can be increased at the expense of memory by increasing the number of memory
resident pages (see the parameter NUMPAGE, above). If the number of pages times
the number of characters per page (NUMCPP) is large enough to hold the entire
CIF, the application will run much faster.

Direct reading of the input CIF, making multiple passes when data items are
requested out of the order in which they are presented in the CIF is only practical
when the number of out-of-order requests is small, and the applications will not
need to be used as a filter, perhaps reading the output of another program "on-
the-fly". Since we cannot predict the range of applications and CIFs for which
CIFtbx will be used, and direct reading could become impossibly slow, CIFtbx
uses a direct access file.

The processing of an output CIF is simpler than reading a CIF. The application
determines the order in which the writing is to be done. No sorting is normally
needed. Therefore CIFtbx writes an output CIF directly.

Case sensitivity

A CIF may contain data names in upper, lower, or a mixture of cases. Internally
CIFtbx does all its name comparisons in lower case, using the function locase
(see above) to convert. Good style, however, dictates the use of certain case
combinations in certain names. Therefore CIFtbx does this lower case conversion
as needed, preserving the original case for whatever use may be desired. An
application needing maximum speed and which does not need to preserve the
cases in the original CIF might consider doing the case conversion once and
removing the use of locase.

Management of White Space

CIF does not care about white space. One blank or tab is equivalent to many
blanks or tabs or empty lines in separating data names from values and values
from one another. The internal routine getstr extracts the next white-space
delimited string, using getlin to deliver input lines from the direct access file as
required. Since Fortran does not provide dynamic memory allocation, this
approach presents a problem with multi-line text fields. Rather than allocate a
large fixed space that might not hold still larger text fields the library delivers
those strings one line at a time. As with case-sensitivity, CIFtbx does white-space
scanning repeatedly, keeping the original presentation (including tabs) available
should an application need access. An application needing maximum speed and
not needing the information and wishing to conserve space on disk might wish to
modify CIFtbx to remove all comments and compress all separating white space
to single blanks or line terminators in an initial sweep.

CIFtbx Primer Plus Page - 105 Release 2.6

CIFtbx Primer Plus Page - 106 Release 2.6

Bibilography

[Allen 96] "The Protein Data Bank and the Cambridge Structural Database: Inter-
relationships in Construction and Utilization", 17th IUCr Congress and General
Assembly, Seattle, Washington, USA, 8-17 August 1996, Abstract S0232, 1996.

[Allen, Barnard, Cook, Hall 95] F. H. Allen, J. M. Barnard, A. F. P. Cook. and S. R.
Hall, "The Molecular Information File (MIF): Initial Specifications", J. Chem.
Inform. Comp. Sci., Vol. 35, 1995, 412-427.

[Berman, Westbrook 93] H. M. Berman and J. Westbrook, "How the NDB uses
CIF", in "Proceedings of the First Macromolecular Crystallographic Information
(CIF) Tools Workshop", P. E. Bourne, ed., October 15-18, 1993, Tarrytown, NY,
Howard Hughes Medical Institute, Columbia University, NY, 1993, pp. 63-66.

[Bernstein 97] H. J. Bernstein, "Software Engineering", Encyclopedia of Applied
Physics, Vol. 18, VCH Publishers, Inc., 1997, pp 305-340.

[Bernstein 97a] H. J. Bernstein, "CIFtbx Applications. cif2cif: A program to copy
CIFs", in prepapration.

[Bernstein, Andrews 96] H. J. Bernstein and L. C. Andrews, "Software for Lattice
Identification in G-6," invited presentation for Seattle IUCr meeting, 7-17 August
1996.

[Bernstein, Bernstein 96] F. C. Bernstein and H. J. Bernstein, "Translating mmCIF
Data into PDB Entries", invited presentation for CIF workshop at Seattle IUCr
meeting, 7-17 August 1996. software available at http://www.bernstein-plus-
sons.com//software/cif2pdb

[Bernstein, Bernstein, Bourne 98] H. J. Bernstein, F. C. Bernstein and P. E. Bourne,
“CIF Applications. pdb2cif: Translating PDB Entries into mmCIF Format”, J.
Appl. Cryst., accepted, software available at
http://ndbserver.rutgers.edu/NDB/mmcif/software

[Bernstein, Hall 96] H. J. Bernstein and S. R. Hall, "CIF Applications. CYCLOPS2:
Extending the Validation of CIF Data Names," J. Appl. Cryst., to appear, software
available at http://ndbserver.rutgers.edu/NDB/mmcif/software

[Bernstein, Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shimanouchi,
Tasumi 77] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer Jr., M. D.
Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi and M. Tasumi, "The Protein
Data Bank: A Computer-Based Archival File for Macromolecular Structures", J.
Molec. Biol. Vol. 112,1977, pp. 535-542. Also published in Eur. J. Biochem. Vol. 80,
1977, pp. 319-324, Arch. Biochem. Biophys. Vol. 185, 1978, pp. 584-591.

[Bourne 93] P.E. Bourne, ed., "Proceedings of the First Macromolecular
Crystallographic Information (CIF) Tools Workshop", October 15-18, 1993,

CIFtbx Primer Plus Page - 107 Release 2.6

Tarrytown, NY, Howard Hughes Medical Institute, Columbia University, NY,
1993, 127 pp.

[Bourne, Berman, McMahon,. Watenpaugh, Westbrook, Fitzgerald 96] P. E.
Bourne, H. M. Berman, B. McMahon,. K. D.. Watenpaugh, J. Westbrook, and P.
M. D. Fitzgerald, "The Macromolecular Crystallographic Information File
(mmCIF)", Methods in Enzymology, 1996, submitted.

[Bourne, Bernstein, Bernstein 96] P. E., Bourne, H. J. Bernstein and F. C. Bernstein,
"Translating PDB Entries into mmCIF", invited presentation for CIF workshop at
Seattle IUCr meeting, 7-17 August 1996.

[Fitzgerald, Berman, Bourne, McMahon, Watenpaugh, Westbrook 96] P. M. D.
Fitzgerald, H. M. Berman, P. E. Bourne, B. McMahon, K. D.Watenpaugh, and J.
Westbrook, "The MMCIF Dictionary: Community Review and Final Approval,"
17th IUCr Congress and General Assembly, Seattle, Washington, USA, 8-17
August 1996, Abstract E1226, 1996. Version 0.9.01 available from
http://ndbserver.rutgers.edu

[Gelbin, Westbrook, Berman 95] A. Gelbin, J. Westbrook, H. Berman, "mmCIF
Data Set DDF040", 1995, available from http://ndbserver.rutgers.edu derived
from G. A. Leonard, T. W. Hambley, K. McAuley-Hecht, T. Brown, W. N. Hunter,
"Anthracycline-DNA Interactions at Unfavourable Base-Pair Base-Pair Triplet-
Binding Sites: Structures of d(CGGCCG)/Daunomycin and
d(TGGCCA)/Adriamycin Complexes", Acta Cryst., Vol. D49, 458 ff., 1993.

[Hall 91] S. R. Hall, "The STAR File: A New Format for Electronic Data Transfer
and Archiving", J Chem Inform Comp Sci., Vol. 31, 1991, pp. 326-333.

[Hall 93a] S. R. Hall, "CIF Appl. II. CIFIO: for CIF Input/Output in the Xtal
System", J. Appl. Cryst., Vol. 26, 1993, pp. 474-479.

[Hall 93b] S. R. Hall, "CIF Appl. III. CYCLOPS: for validating CIF Data Names", J.
Appl. Cryst., Vol. 26, 1993, pp. 480-481.

[Hall 93c] S. R. Hall, "CIF Appl. IV. CIFtbx a Toolbox for Manipulating CIF's", J.
Appl. Cryst., Vol. 26, 1993, pp. 482-494.

[Hall, Allen, Brown 91] S. R. Hall, F. H. Allen and I. D. Brown, "The
Crystallographic Information File (CIF): A New Standard Archive File for
Crystallography", Acta Cryst., Vol. A47, 1991, pp. 655-685.

[Hall, Bernstein 96] S. R. Hall and H. J. Bernstein, "CIF Applications. CIFtbx2:
Extended Tool Box for Manipulating CIFs", J. Appl. Cryst., Vol. 29, 1996, pp 598-
603.

[Hall, King, Stewart 95] S. R. Hall, G. D. S. King and J. M. Stewart, "Xtal 3.4 Users
Manual. Report", University of Western Australia, 1995.

CIFtbx Primer Plus Page - 108 Release 2.6

[Hall, Cook 95] S. R. Hall and A. P. F. Cook, "Data Definition Language for STAR
File Dictionaries", J. Chem. Inform. Comp. Sci., Vol. R35, 1995, pp. 819-825.

[Hall, Sievers 93] S. R. Hall & R. Sievers, "CIF Appl. I. QUASAR: for extracting
CIF data", J. Appl. Cryst., Vol. 26, 1993, pp. 469-473.

[Hall, Spadaccini 94] S. R. Hall and N. Spadaccini, "The STAR File: Detailed
Specifications", J. Chem. Inform. Comp. Sci., Vol. 34, 1994, pp. 505-508.

[Holland 96] A. J. Holland, "CCP14 in Powder and Single-Crystal Diffraction",
17th IUCr Congress and General Assembly, Seattle, Washington, USA, 8-17
August 1996, Abstract E0119, 1996. See http://www.dl.ac.uk/CCP/CCP14

[IUCr 95] "A Guide to CIF for Authors", International Union of Crystallography,
Chester, England, 1995, 16 pp.

[IUCr 96] "Notes for Authors", Acta Cryst. , Vol. C52, 1996, pp. 265-278.

[Keller 96] P. A. Keller, "A mmCIF Toolbox for CCP4 Applications", presentation
for CIF workshop at Seattle IUCr meeting, 7-17 August 1996, abstract E0726, 1996.

[Knuth 73] D. E. Knuth,KNUTH, D. E.. (1973) “The Art of Computer Programming,
Volume 3/Sorting and Searching”, Addison Wesley Publishing Company, Reading
MA,1973, 722 pp.

[Knuth 84] D. E. Knuth, "The TEXbook", Addison Wesley Publishing Company,
Reading MA, 1994, 481 pp.

[McMahon 93a] B. McMahon, "CIF Software at Chester", in "Proceedings of the
First Macromolecular Crystallographic Information (CIF) Tools Workshop", P.E.
Bourne, ed., October 15-18, 1993, Tarrytown, NY, Howard Hughes Medical
Institute, Columbia University, NY, 1993, pp. 55-56.

[McMahon 93b] B. McMahon, "How does my CIF become a printed paper?", Acta
Cryst., Vol. C49, 1993, pp. 418-423.

[McMahon 95] B. McMahon, "A Brief History of the DDL", COMCIFS, 1995.
http://www.iucr.ac.uk/iucr-top/cif/ddlhist.html

[PDB 96] "Protein Data Bank Contents Guide: Atomic Coordinate Entry Format
Description", Version 2.1 (draft), October 25, 1996, Protein Data Bank, Upton, NY,
1996, 156 pp.

[Sayle 94] R. Sayle, "Rasmol 2.5 Molecular Graphics Visualization Tool,"
BioMolecular Structures Group, Glaxo Research & Development, Greenford,
Middlesex, UK., October 1994.

[Sheldrick 95] G. M. Sheldrick, "PDB entry 1CTJ, Crystal Structure of Cytochrome
c6," Protein Data Bank, 8 August 1995, from C. Frazao, C. M. Soares, M. A.

CIFtbx Primer Plus Page - 109 Release 2.6

Carrondo, E. Pohl, Z. Dauter, K. S. Wilson, M. Hervas, J. A. Navarro, M. A. De La
Rosa, G. M. Sheldrick, "Ab Initio Determination of the Crystal Structure of
Cytochrome c6, Comparison with Plastocyanin," Structure (London) Vol. 3, 1159-
1169, 1995.

[Spadaccini, Hall 94] N. Spadaccini & S. R. Hall, "Star_Base: Accessing STAR File
Data", J. Chem. Inform. Comp. Sci. Vol. 34, 1994, pp. 509-516.

[Stampf 94] D. R. Stampf, "ZINC -- Galvanizing CIF to work with UNIX," Protein
Data Bank, Upton, NY 1994.

[Stampf et al. 96] D. R. Stampf, E. E. Abola, N. O. Manning, D. Xue, J. L. Sussman,
"AutoDep - Facilitating Deposition to the Protein Data Bank through the New
Web-Based Submission Form", 17th IUCr Congress and General Assembly,
Seattle, Washington, USA, 8-17 August 1996, Abstract E1205.

[Toby 97] B. H. Toby, "Powder CIF Dictionary," version 0.996, available from
http://www.iucr.ac.uk/iucr-top/CIF

[Westbrook, Hall 95] J. Westbrook and S. R. Hall, "A Dictionary Description
Language for Macromolecular Structure, Draft DDL V 2.1.0", IUCr COMCIFS,
Chester, England, 1995.

[Westbrook, Hsieh, Fitzgerald 97] J. D. Westbrook, S.-H. Hsieh and P. M. D.
Fitzgerald, "CIFLIB: An Application Program Interface to CIF Dictionaries and
Data Files", J. Appl. Cryst., Vol. 30, 1997, pp. 79-83.

CIFtbx Primer Plus Page - 110 Release 2.6

Index

alias 26, 77, 78 DDL2 26, 78
aliaso_ 25, 69 decp_ 23, 67
alias_ 23, 66 diccat_ 23, 52, 67
alignment 5 dicname_ 23, 26, 52, 67
align_ 25, 69 dictionaries 84
apostrophe 3 dictionary 75
append_ 23, 66 dictionary checks 77

dictype_ 23, 52, 67
bkmrk_ 19, 33, 49 dict_ 18, 31, 33, 61
bloc_ 23, 31, 67 dicver_ 24, 67
bookmark 19 directory 81
build of CIFtbx2 85 dollar sign 3

double precision 62
case sensitivity 2 double quote 3
catck 45 dtype 45
category 74, 78
category key 74 error 73
catno 45 error message device 43
char 69 esd 21, 61, 62
character data 63, 69 esddig_ 24, 67
char_ 20, 31 esdlim_ 25, 61, 62, 69
CIF 80
ciftbx.cmf 83 file_ 22, 66
ciftbx.cmn 83 final 45
ciftbx.cmv 73, 83 find_ 19, 50
ciftbx.f 83, 85 first 45
ciftbx.src 83 functions 17
ciftbx.sys 73, 83
cif_core.dic 85 global_ 4
cif_mm.dic 85 globo_ 25, 69
clearfp.f 83 glob_ 24, 67
clearfp_sun.f 83, 85
close 45 hash mark 3
close_ 22, 57, 64 hash_funcs.f 83, 85
cmnt_ 20, 55 horizontal position 52
comment 20, 22, 61
comments 3 init_ 18, 31
control variables 17 input CIF device 43
copyright 79 installation 81
COREDICPATH 88 IUCr Policy 80
Crystallographic Information File 80 iucr.sdsc.edu 82
CUT_HERE 84 line_ 23, 66, 75
CYCLOPS vii listings 85

list_ 24, 51, 68
data type_ check 45 longf_ 22, 66
data_ 4, 19, 31, 48 long_ 24, 68
DDL 78 loop_ 4, 24, 31, 68, 75

CIFtbx Primer Plus Page - 111 Release 2.6

lzero_ 24, 68 posend_ 24, 68
posnam_ 24, 52, 68

Makefile 83, 85, 87, 88 posval_ 24, 52, 68
MANIFEST 83 pposdec_ 25, 70
MAXBUF 73, 87 pposend_ 25, 70
missing 69 pposnam_ 25, 70
MMDICPATH 88 pposval_ 26, 70
monitor variables 17 pquote_ 26, 60, 70

precn_ 22, 66, 70
name_ 20, 31, 53 prefix 64
nblanko_ 25, 60, 69 prefx_ 22, 63
nblank_ 23, 67 problems 89
ndbserver.nibh.go.jp/NDB/mmcif
82

ptabx_ 26, 70
ptext_ 21, 63

ndbserver.rutgers.edu/NDB/mmcif
82, 85

purge_ 20, 55

nodup 45 question mark 3, 5
null 69 quotes 5, 75
numb 69 quote_ 24, 52, 68
number data 69
NUMBLOCK 73, 87 recbeg_ 23, 67
numb_ 20, 31, 54 recend_ 67
NUMCHAR 86 recn_ 22, 66
NUMCPP 87 regend_ 23
NUMDICT 73, 87 release kit 82
numd_ 20, 54 reset 45
NUMHASH 86
NUMITEM 73, 87 saveo_ 26, 58, 70
NUMLOOP 73, 87 save_ 4, 24, 68
NUMPAGE 87 scratch file device 43

semicolon 3
ocif_ 19, 31, 48 single quote 3
output CIF device 43 special characters 3

STAR 80
parameter 73 stop_ 4
parameters 86 strg_ 24, 68
pchar_ 21, 60 subroutines 17
pcmnt_ 22, 61 SUN 85
pdata_ 21, 57, 58
pdb2cif vii tabl_ 26, 70
pdecp_ 25, 69 tabx_ 23, 67, 68
period 3 tagname_ 24, 26, 52, 68
pesddig_ 25, 69 tbxver_ 22, 66
pfile_ 21, 57 tbx_ex 85, 89
ploop_ 21, 59 tbx_exm 85, 89
plzero_ 25, 69 test outputs 88, 89
pnumb_ 21, 61 test_ 19, 51
pnumd_ 21, 62 text 69
posdec_ 24, 52, 68 text data 69

CIFtbx Primer Plus Page - 112 Release 2.6

text_ 24, 31, 69
type code 77, 78
type_ 24, 52, 69

underscore 3

valid 45
validation check 45

warning 73
white-space 3
www.bernstein-plus-sons.com 82
www.ebi.ac.uk/NDB/mmcif 82
www.fr.iucr.org 82
www.iucr.ac.uk 85
www.iucr.org 82
www.se.iucr.org 82
www.za.iucr.org 82

CIFtbx Primer Plus Page - 113 Release 2.6

