
Porting Excel/VBA to
Calc/StarBasic

Title: Porting Excel/VBA to Calc/StarBasic
Version: 1.0
First edition: June 6, 2004
First English
edition: June 6, 2004

Contents

Contents

Contents...ii

Overview..iii

Copyright and trademark information...iii

Feedback..iii

Acknowledgments..iv

Modifications and updates ..iv

Introduction..1

Terminology..1

StarBasic Background...1

Understanding the OpenOffice Object Model..2

Examples of Porting Visual Basic for Applications to StarBasic..4

General Programming Notes...4

Application..5

Workbooks/Workbook..7

Worksheets/Worksheet...11

Range/Cell...14

Charts/Chart..19

Controls...22

UserForms...24

Integrated Development Environment (IDE) Differences...33

Porting Sample Workbook [Spreadsheet]..35

Porting Tasks...35

Run-time Experiences...39

Appendix A: XRay tool..40

Appendix B: Supporting Functions...44

Appendix C: Multi-Page Control..48

Bibliography..53

Public Documentation License, Version 1.0..54

Porting Excel/VBA to Calc/StarBasic ii

Overview

Overview

Although OpenOffice 1.1 Calc is able to read Microsoft Excel workbooks, compatibility
extends primarily to functionality found in worksheets. Excel workbooks with Visual Basic
for Applications (VBA) macros embedded do not function in Calc, even though VBA and
StarBasic (SB) are syntactically the same. The reason Excel/VBA workbooks do not work
under Calc/SB is due to the differences in the underlying object models for Excel and Calc.

The intent of this document is to show, by way of examples, how to port VBA macros
accessing Excel objects to the equivalent SB macros accessing Calc objects. This manual is
written from the perspective of an experienced Excel/VBA programmer. Hence the reader is
assumed to know the VBA language and is familiar with the MS Excel Object Model. This
document is not a tutorial on SB.

The information contained here is based on Excel 2000 and OpenOffice 1.1 object models.
A discussion covering all aspects of the Excel object model is beyond the scope of this
manual. This manual's intent is to provide sufficient examples where the reader can get
started in porting VBA to SB and to point the reader to other references for more complete
information.

This manual is a living document and is expected to be updated as more experience is gained.
The reader should feel free to contact the author to suggest areas to expand this document.

Copyright and trademark information
The contents of this Documentation are subject to the Public Documentation License,
Version 1.0 (the "License"); you may only use this Documentation if you comply with the
terms of this License. A copy of the License is available at:
http://www.openoffice.org/licenses/PDL.html

The Original Documentation is Porting Excel/VBA to Calc/StarBasic. The Initial Writer(s)
of the Original Documentation is/are James M. Thompson © 2004. All Rights Reserved.
(Initial Writer contact(s): masato12610@openoffice.org.)

Contributor(s): <CONTRIBUTORS' NAMES> .

Portions created by <CONTRIBUTORS' NAMES> are Copyright © <YEAR(S)> . All Rights Reserved.
(Contributor contact(s):<EMAIL ADDRESS>).

All trademarks within this guide belong to legitimate owners.

Feedback
Please direct any comments or suggestions about this document to:
dev@documentation.openoffice.org and masato12610@openoffice.org

Acknowledgments

Porting Excel/VBA to Calc/StarBasic iii

Overview

First, thank you to all the folks posting and responding on the various mailing lists and
forums. These exchanges formed the basis for several examples found in this manual.
Second, I'd like to thank the following individuals who took time out of their busy schedule
to suggest changes to improve the document's readability and the code efficiency: dfrench,
Geoff Farrell, Ian Laurenson, Andrew Pitonyak and Juergen Schmidt. Lastly, I'd like to
express my sincerest thank you to my wife, Nora, for her patience and allowing me the time
to work on this manual.

Modifications and updates

Version Date Description of Change

0.1 May 4, 2004

Preliminary version to show scope of coverage and proposed
level of detail for early feedback.

0.2 May 12, 2004

Add examples for Application, Workbooks, Workbook,
Worksheets, Worksheet, Range/Cell. Add description of the
object information utility spreadsheet. Miscellaneous
editorial changes.

0.3 May 23, 2004

Add examples to Range/Cell, UserForms, Controls.
Incorporated feedback from various reviewers. Rewrote
Appendix A to cover XRay tool. Add Appendix B for
supporting functions supporting functions developed for this
manual.

0.4 May 30, 2004

Miscellaneous editorial changes and code improvements.
Add examples for processing activation and deactivation
events for worksheets. Document steps to port sample Excel
workbook to Calc spreadsheet. Final preliminary draft prior
to public release.

1.0
June 5, 2004

Miscellaneous editorial changes and code improvements.
Added discussion on Multi-page Dialogs. Added pointers to
reference material throughout document.

Porting Excel/VBA to Calc/StarBasic iv

Introduction

Introduction

This chapter introduces the core concepts that provide a basis for the discussion that follows
in the rest of this document.

After establishing some core concepts, the document is composed of chapters that cover the
following topics:

• Examples that compare Visual Basic for Applications (VBA) code interacting with the
Excel object model to StarBasic (SB) code interacting with the OpenOffice object model.

• Discussion on the differences between the integrated development environments (IDE)
provide with VBA and SB

• Discussion on converting a sample Excel workbook with VBA macros into a Calc
Spreadsheet with SB macros.

Terminology
The terminology used in this document is geared toward Excel/VBA programmers because
they comprise the target audience. The following convention is followed. This manual uses
Excel specific terms, and if there is a different Calc term for the equivalent entity, it follows
the Excel term in square brackets. See the following as illustrative examples:

• workbook [spreadsheet]

• worksheet [sheet]

StarBasic Background
For the Excel/VBA programmer, SB is a Basic programming language very similar to VBA.
The primary reason that VBA does not work in Calc, even though Calc is able to read the
Excel workbook, is that Calc uses a different method to access the workbook [spreadsheet]
components, such as cells on the worksheet [sheet]. The access mechanisms are different in
Calc. Specifically the objects, attributes and methods use different names and the
corresponding behavior is sometimes slightly different.

For those who wish a better understanding of SB, there are several documents publicly
available that explain the language and programming environment. These documents, listed
in the Bibliography, can be found on the Web.

• StarOffice 7 Software Basic Programmer's Guide

• Migrating from Microsoft Office to StarOffice 7

• Useful Macro Information For OpenOffice

• How to Use BASIC Macros in OpenOffice.org

These are excellent resources for those who are getting started in SB macro programming.

Porting Excel/VBA to Calc/StarBasic 1

Introduction

Understanding the OpenOffice Object Model
Although this manual answers many questions about porting Excel/VBA macros to Calc/SB,
it is not complete – not all questions are answered. The reader may find it necessary to refer
to the object model documentation for OpenOffice products. For the Excel/VBA
programmer, it may take some some time to become comfortable with the way that
OpenOffice objects are documented.

The primary difference between the Excel object model and the OpenOffice object model is
that Excel's model does not take advantage of all of the features that constitute an object-
oriented programming environment. In some publications, Microsoft's object model for their
products, such as Excel, is termed "object-like".

In a true object-oriented programming model, there is the concept of inheritance. This
concept allows one object's definition and implementation to be based on another object's
definition and implementation. Microsoft's object-like model does not support inheritance.

To illustrate inheritance, consider the following example. There is an object called "Shape"
with a method called "move()" that moves the "Shape" around on the display screen. In a
true object-oriented programming environment, a new object called "Circle", which is a type
of "Shape", can be implemented in the following manner. Instead of forcing "Circle" to
implement its own "move()" method for moving around the display screen, the "Circle"
object inherits the "move()" method from the "Shape" object.

The paradigm used in OpenOffice consists of interfaces and services. An interface defines
methods. If an object implements an interface then that object must support all of the
methods defined by the interface. An interface may be derived from another interface – in
other word, inheritance. Assume that a "Circle" interface inherits from a "Shape" interface.
Any object that implements the "Circle" interface must implement every method defined by
both the "Circle" interface and the "Shape" interface. Although it is not possible to inherit
from more than one interface at a time, this is scheduled to be changed in a future release of
OpenOffice. A service defines an object by specifying the interfaces and properties that the
object supports – a property may be defined as optional. A service may also specify that it
supports other services. An interface always contains an X in its name. For example, the
com.sun.star.drawing.XShape interface defines the methods to get and set a shapes position
and size. The com.sun.star.drawing.Shape service (notice that the X is missing from the
name) defines an object that has the XShape interface – it supports a few other interfaces and
some properties as well. Although the services and interfaces contain long names, they are
frequently abbreviated by dropping the first part of the name; for example XShape.

In terms of an Excel/VBA programmer understanding the Calc/SB object model, the concept
of inheritance is important. Consider the following situation. In Excel, assume there exists a
named range called Range("MyMatrix"). This respresents a two-dimensional array of
cells in a worksheet. In Excel, to determine the number of rows in the range, a programmer
can accesses the range property Range("MyMatrix").Rows.Count.

To find the equivalent information in Calc/SB, the programmer can consult the
"Spreadsheet" section in the OpenOffice Developer's Guide. First, to access the range, there
is a method defined by the XCellRange interface called getCellRangeByName. The
XCellRange interface is exported by many services including CellRange and Spreadsheet.

Porting Excel/VBA to Calc/StarBasic 2

Introduction

Using the method getCellRangeByName() we are able to locate the range "MyMatrix" using
the call .getCellRangeByName("MyMatrix").

From the "Spreadsheet" section of the Developer's Guide, the programmer sees that using the
service com.sun.star.sheet.SheetCellRange, we obtain access to the service
XColumnRowRange. This services provides access to the columns and rows of the range.
From here we see that we can invoke the method getRows() to retrieve the collection of rows
making up the range.

However, at this point it is not clear how to get the number of rows. By remembering the
concept of inheritance, the programmer should realize that "rows" is a specialization of the
class "collection", and according the the object model, "rows" inherits from "collections"
Now looking at the methods associated for collections, the programmer sees in the
com::sun::star::container::XIndexAccess interface a method getCount() that retrieves the
number of items in a collection.

Putting all of this together we now have a way to determine the number of rows in a range of
cells. The SB call looks like
ThisComponent.CurrentController.ActiveSheet.getCellRangeByName("MyMatrix").
getRows.getCount()

The moral of this little tale is that the Excel/VBA programmer, in making the transition to
StarBasic, should remember to consider the concept of inheritance.

The following URL are the main reference material for this manual:

• http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html

• http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html

In doing research for this manual, a useful debugging tool was found. The tool is called
XRay, developed by Bernard Marcelly, and can be found at
http://www.ooomacros.org/dev.php101416. XRay allows a programmer to inspect at run-
time the various Calc objects. This is similar in function to the VBA debugger. In
combination with the downloaded OOo SDK, XRay is able to bring up SDK related
documentation for an object while you are using XRay to view Calc objects. This feature is
useful in understanding the Calc object model. Features of XRay are illustrated in Appendix
A.

Porting Excel/VBA to Calc/StarBasic 3

Examples of Porting Visual Basic for Applications to StarBasic

Examples of Porting Visual Basic for
Applications to StarBasic

This section is organized by MS Excel objects. For the Excel objects covered in this manual,
Visual Basic for Application (VBA) code fragments are shown using a particular method or
property. Along side the VBA code fragment, the equivalent, or as close to equivalent that is
possible, StarBasic (SB) code fragment is shown.

One general note on the difference between VBA and SB. In VBA, when an Excel object is
referenced, such as a range of cells, unless explicitly coded, the cell range is assumed to be in
the currently active Excel container, such as the workbook (ActiveWorkbook) and worksheet
(ActiveSheet). In SB, on the other hand, no such assumption is made, so each reference to a
Calc object must be fully qualified. In other words, you have to specify the workbook
[spreadsheet] and worksheet [sheet].

One technique in Excel/VBA to determine macro code is to use the macro recording function
to get an initial set of code. This resultant code can often be generalized.

While the same technique can be used in Calc/SB, the experience to date in using the
technique has not been very successful. The code generated by the macro recorder is based
on interacting with the spreadsheet versus recording the resultant manipulations of the
spreadsheet object model.

It is possible to generalize the recorded code. However, it provides little insight into use of
the spreadsheet object model. An alternative to using the native macro recorder feature in
Calc is to download the Calc macro recorder from http://ooomacros.org/user.php written by
Paolo Mantovani. Paolo's macro recorder creates a macro that primarily uses references to
the Calc objects rather than the more cryptic dispatcher calls. The macro guide at
http://www.math.umd.edu/~dcarrera/openoffice/docs/ contains an excellent description of
how to use the macro recorder and arrange your macros into libraries.

General Programming Notes
Indicator in Excel [Calc] that indicates a macro is currently executing.
Excel The mouse pointer changes from an arrow to an hourglass.
Calc The mouse pointer does not change. There does not appear to be any

indication that a macro is running in Calc.

Manually terminating a macro executing
Excel Ctrl-Break
Calc • Tools > Macros > Marco > Edit

• Press Stop button

Assigning an object to a variable

Porting Excel/VBA to Calc/StarBasic 4

Examples of Porting Visual Basic for Applications to StarBasic

VBA Sub MyProc
 Dim wksh as Worksheet

 set wksh = ActiveWorksheet

End Sub
SB Sub MyProc

 Dim oSheet as Object

 oSheet = ThisComponent.CurrentController.ActiveSheet

 'or

 set oSheet = ThisComponent.CurrentController.ActiveSheet
End Sub

Usage Note: While the set statement is defined in SB, its use does not seem to be
enforced, as in VBA. In Excel, in addition to the generic Object type, there are various
specific object types (Worksheet, Workbook, Range, etc.), however, in Calc, there is
only the generic Object type.

Application
Object representing the workbook [spreadsheet] that is active
VBA ActiveWorkbook

SB ThisComponent
Reference:
http://api.openoffice.org/docs/DevelopersGuide/ProfUNO/ProfUNO.htm#1+Professional+UNO
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+3+2+2+ThisC
omponent

Object representing the worksheet [sheet] in the workbook [spreadsheet] that is active
VBA ActiveSheet

SB ThisComponent.CurrentController.ActiveSheet

Reference:
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.htm#1+Office+Development
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html#getActiveSheet

 Object representing the cell that is active
VBA ActiveCell

SB ThisComponent.getCurrentSelection

Usage Note: See Pitonyak's document (Chapter 18) for qualifications about this. In a
nutshell, getCurrentSelection returns the object that currently has the focus just prior to
the start of the macro execution. This is the ActiveCell only if a single cell has focus
just prior to start of the macro.

Porting Excel/VBA to Calc/StarBasic 5

Examples of Porting Visual Basic for Applications to StarBasic

Turn-off screen updating
VBA Application.ScreenUpdating = False

SB ThisComponent.LockControllers
Reference:
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html#lockControllers

Turn-on screen updating
VBA Application.ScreenUpdating = True

SB ThisComponent.UnlockControllers

Reference:
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html#unlockControllers

Temporarily suspend the execution of the macro program for 1 second
VBA Application.Wait(Now + TimeValue("00:00:01"))

SB Wait 1000

Usage Note: In SB, the Wait is part of the SB environment. The argument to the Wait
statement is the number of milliseconds to delay. In testing this code, the VBA
procedure drove the processor to 100 per cent busy. On the other hand the SB Wait
statement does not drive the processor to 100 percent busy.

Reference: OpenOffice.org Basic On-line Help

Calling Excel [Calc] worksheet [sheet] function in VBA [SB]
VBA Sub MyProc

 msgbox WorksheetFunctions.Average(Range("A1:A5"))
 msgbox WorksheetFunctions.Max(Range("A1:A5"), _
 Range("C1:C5))
End Sub

SB Sub MyProc
 Dim oSheet, FuncService
 Rem Create service to access sheet functions
 FuncService = _
 createunoservice("com.sun.star.sheet.FunctionAccess")

 oSheet = ThisComponent.CurrentController.ActiveSheet

 msgbox FuncService.callFunction("AVERAGE", _
 array(oSheet.getCellRangeByName("A1:A5")))
 msgbox FuncAcc.CallFunction("MAX", _
 array(oSheet.getCellRangeByName("A1:A5"), _
 oSheet.getCellRangeByName("C1:C5")))

End Sub

Usage Note: Two arguments are needed for callFunction() method. The first is a
string containing the name of the worksheet [sheet] function to invoke. The second is
an array containing the arguments to that function.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/Spreadsheet/Spreadsheet.htm#1+4+2+1+Calculating+Fu
nction+Results and http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html

Porting Excel/VBA to Calc/StarBasic 6

Examples of Porting Visual Basic for Applications to StarBasic

Workbooks/Workbook
List names all open workbooks [spreadsheets]
VBA Sub MyProc

 Dim wbk as Workbook

 For Each wbk in Workbooks
 msgbox wbk.Name
 next
End Sub

SB Sub ListDocs
 Dim oDocs As Object, oDoc As Object
 REM Load the included "Tools" library
 GlobalScope.BasicLibraries.LoadLibrary("Tools")
 oDocs = StarDesktop.getComponents().createEnumeration()
 Do While oDocs.hasMoreElements()
 oDoc = oDocs.nextElement()
 REM Ignore any component that is not a document.
 REM The IDE, for example
 If HasUnoInterfaces(oDoc, "com.sun.star.frame.XModel") Then
 REM If there is no URL, then do not try to find it
 If oDoc.hasLocation() Then
 REM Use the FileNameOutOfPath routine included with OOo
 MsgBox FileNameOutOfPath(oDoc.getURL()) &_
 " is of type " & GetDocumentType(oDoc)
 End If
 End If
 Loop
End Sub

Usage Note: The oDoc.nextElement() call returns all opened OO.o documents
including Writer documents. So the potential exists to return more than just open Calc
documents.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+3+2+1+StarD
esktop,

Open workbook "My2ndWorkbook" that is located in the same directory as the currently
active workbook.
VBA Sub MyProc

 Dim NewWorkbook as Workbook

 set NewWorkbook = Workbooks.Open (ActiveWorkbook.Path _
 & "\My2ndWorkbook.xls")
End Sub

Porting Excel/VBA to Calc/StarBasic 7

Examples of Porting Visual Basic for Applications to StarBasic

SB Sub MyProc
 Dim DirectoryName as String
 Dim NewWorkbook as Object
 Dim NoArgs() 'empty array for no arguments

 Rem Assume DirectoryName variable contains directory
 Rem location of the currently active workbook

 NewWorkbook = StarDesktop.loadComponentFromURL _
 ("file:///" & DirectoryName & "/My2ndWorkbook.sxc", _
 "_blank",0 ,NoArgs())
End Sub

Usage Note: See example for obtaining directory of currently active workbook
[spreadsheet] later on in this manual. For both Excel and Calc, if there is a macro to be
executed when the workbook [spreadsheet] is opened, the macro will not be executed
using the above code fragment. Regarding the specific SB code show above, another
side-effect is that no macro associated with any event, such as "When Initiating" for
controls, will execute. If it is desired to execute the macros based on events occurring
in the workbook [spreadsheet], see the next example.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.htm#1+1+5+1+Loading+Documen
ts and
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponen
tFromURL

Open workbook "My2ndWorkbook" that is located in the same directory as the currently
active workbook and execute the macro associated with the opening of the workbook
[spreadsheet].
VBA Sub MyProc

 Dim NewWorkbook as Workbook

 set NewWorkbook = Workbooks.Open (ActiveWorkbook.Path _
 & "\My2ndWorkbook.xls")
 NewWorkbook.RunAutoMacros xlAutoOpen
End Sub

SB Sub MyProc
 Dim DirectoryName as String
 Dim NewWorkbook as Object
 Dim Args(0) as new com.sun.star.beans.PropertyValue

 Rem Assume DirectoryName variable contains directory
 Rem location of the currently active workbook

 Args(0).Name = "MacroExecutionMode"
 Args(0).Value = _
 com.sun.star.document.MacroExecMode.ALWAYS_EXECUTE
 NewWorkbook = StarDesktop.loadComponentFromURL _
 ("file:///" & DirectoryName & "/My2ndWorkbook.sxc", _
 "_blank",0 ,Args())
End Sub

Porting Excel/VBA to Calc/StarBasic 8

Examples of Porting Visual Basic for Applications to StarBasic

Usage Note: This enables the macro associated with the "Open Document" event to
execute when the spreadsheet is opened. In addition, other macros associated with
other events, such as "When Initiating" event for controls, will function as well.
Reference: http://api.openoffice.org/servlets/ReadMsg?list=dev&msgNo=10707 ,
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html and
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

Close workbook [spreadsheet] opened in the previous example
VBA NewWorkbook.Close

SB NewWorkbook.Close(False)
Reference:
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.htm#1+1+5+2+Closing+Document
s and http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html

Execute a macro when a workbook [spreadsheet] is opened.
VBA Excel predefined procedure Workbook_Open() associated with the

workbook component

SB User macro assigned to the "Open Document" event through the
Tools > Macros > Macro > Assigned... sequence.

Execute a macro when a workbook is closed
VBA Excel predefined procedure Workbook_BeforeClose() associated

with the workbook component

SB User macro assigned to the "Close Document" event through the
Tools > Macros > Macro > Assigned... sequence.

Usage Note: In the Excel environment, the signature for the procedure is
Workbook_BeforeClose(Cancel as Boolean). This allows the macro to cancel the
close operation by setting Cancel = True. To cancel the close in OOo, you must
register a listener for the close event and then veto the close.
Reference: http://www.oooforum.org/forum/viewtopic.php?t=3576 and
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.htm#1+1+5+2+Closing+Document
s

Porting Excel/VBA to Calc/StarBasic 9

Examples of Porting Visual Basic for Applications to StarBasic

Get filename of the ActiveWorkbook [ThisComponent]
VBA Sub MyProc

 ActiveWorkbook.Name
End Sub

SB Sub MyProc
 Dim URLStr as String
 Dim FileName as String

 REM Load the included "Tools" library
 GlobalScope.BasicLibraries.LoadLibrary("Tools")
 REM This code assumes that the file has been saved
 REM at least once so that it has a URL.
 URLStr = ThisComponent.getURL()
 FileName = FileNameOutOfPath(URLStr)

End Sub

Usage Note: Format of URL, at least for file based documents are
"file:///<directory>/<filename>".

Get location (directory) of the ActiveWorkbook [ThisComponent]
VBA Sub MyProc

 ActiveWorkbook.Path
End Sub

SB Sub MyProc
 Dim URLStr as String
 Dim Path as String
 REM Load the included "Tools" library
 GlobalScope.BasicLibraries.LoadLibrary("Tools")
 URLStr = ThisComponent.getURL()
 Path = DirectoryNameoutofPath(URLStr, "/")

End Sub

Usage Note: Format of URL, at least for file based documents are
"file:///<directory>/<filename>". Use the method ConvertFromURL() to convert from
URL notation to the standard notation.

Porting Excel/VBA to Calc/StarBasic 10

Examples of Porting Visual Basic for Applications to StarBasic

Worksheets/Worksheet

Add a new worksheet [sheet] named "MyNewSheet" to the current workbook
VBA Sub MyProc

 Dim wksh as Worksheet

 Rem Add new worksheet before ActiveSheet
 set wksh = Worksheets.add
 wksh.Name = "MyNewSheet"

 Rem Add new worksheet after ActiveSheet
 set wksh = Worksheets.add after:=ActiveSheet
 wksh.Name = "MyNewSheet"

 Rem Add new worksheet before Worksheet "SomeOtherSheet"
 set wksh = Worksheets.Add before:= _
 Worksheets("SomeOtherSheet")
 wksh.Name = "MyNewSheet"

 Rem Add new worksheet after worksheet "SomeOtherSheet"
 set wksh = Worksheets.Add after:= _
 Worksheets("SomeOtherSheet")
 wksh.Name = "MyNewSheet"
End Sub

Porting Excel/VBA to Calc/StarBasic 11

Examples of Porting Visual Basic for Applications to StarBasic

SB ''This code fragment makes use of a user defined function
'''findSheetIndex() documented in Appendix B.

Sub MyProc
 Dim oSheeet as object
 Dim oSheets
 oSheets = ThisComponent.Sheets

 Rem Add new sheet at end of collection
 oSheets.insertNewByName("SomeOtherSheet", _
 oSheets.getCount())

 Rem Add new sheet before ActiveSheet
 oSheet = _
 ThisComponent.CurrentController.ActiveSheet
 ThisComponent.Sheets.InsertNewByName(_
 "NewSheet_2", _
 findSheetIndex(oSheet.Name))

 Rem Add new sheet after ActiveSheet
 oSheet = _
 ThisComponent.CurrentController.ActiveSheet
 oSheets.InsertNewByName("NewSheet_3", _
 findSheetIndex(oSheet.Name)+1)

 Rem Add new sheet before sheet "SomeOtherSheet"
 oSheets.InsertNewByName("NewSheet_4", _
 findSheetIndex("SomeOtherSheet"))

 Rem Add new sheet after sheet "SomeOtherSheet"
 oSheets.InsertNewByName("NewSheet_5", _
 findSheetIndex("SomeOtherSheet")+1)
End Sub

Usage Note: For purposes of illustration in this manual, no error checking is done for
the return value of findSheetIndex(). In the event the worksheet [sheet] is not found,
-1 is returned by the function.

Delete worksheet [sheet] named "MyNewSheet" from the current workbook [spreadsheet]
VBA Worksheets("MyNewSheet").Delete

SB ThisComponent.Sheets.removeByName("MyNewSheet")

Reference:
http://api.openoffice.org/docs/DevelopersGuide/ProfUNO/ProfUNO.htm#1+3+5+Collections+and+Conta
iners and
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html#removeByNa
me

Do worksheet [sheet] specific processing when "Sheet1" or "Sheet2" are activated or
deactivated.

Porting Excel/VBA to Calc/StarBasic 12

Examples of Porting Visual Basic for Applications to StarBasic

VBA In Excel, predefined procedures exist the events of activating and deactivating
worksheets. For each worksheet, add code to the predefined procedures. The
procedure stubs are shown below.

Private Sub Worksheet_Activate()

 Rem code worksheet specific processing here

End Sub

Private Sub Worksheet_Deactivate()

 Rem code worksheet specific processing here

End Sub

Porting Excel/VBA to Calc/StarBasic 13

Examples of Porting Visual Basic for Applications to StarBasic

SB ' Listener for "ActiveSheet" property changes
Global oActiveSheetListener as Object
' Work variable to hold name of current worksheet
Global CurrentWorksheetName as String

'Procedure to turn-on ActiveSheet Property Change Listener
Sub WorksheetActivationListenerOn

 ' Initialize variable
 CurrentWorksheetName = ""

 'create listner
 oActiveSheetListener = createUnoListener("ACTIVESHEET_", _
 "com.sun.star.beans.XPropertyChangeListener")

 'attach listener to ActiveSheet property
 ThisComponent.CurrentController. _
 addPropertyChangeListener("ActiveSheet", _
 oActiveSheetListener)

End Sub

' procedure to turn-off ActiveSheet property change listener
sub WorksheetActivationListenerOff
 ThisComponent.CurrentController. _
 removePropertyChangeListener("ActiveSheet", _
 oActiveSheetListener)
end sub

' procedure to process each change to the ActiveSheet property
Sub ACTIVESHEET_propertyChange(oEvent)

 'first do deactivate processing
 select case CurrentWorksheetName
 case "Sheet1"
 'do Sheet1 specific deactivate processing

 case "Sheet2"
 'do Sheet2 specific deactivate processing

 end select

 'now execute activate processing for
 'the newly activated sheet
 select case oEvent.Source.ActiveSheet.Name
 case "Sheet1"
 'Do Sheet1 specific activate processing

 case "Sheet2"
 'Do Sheet2 specific activate processing

 end select

 'Save name of newly activated sheet
 CurrentWorksheetName = oEvent.Source.ActiveSheet.Name
end Sub

Porting Excel/VBA to Calc/StarBasic 14

Examples of Porting Visual Basic for Applications to StarBasic

Usage Note: In Calc, there are no predefined events specific to activating or
deactivating a sheet. The approach taken above is to add a PropertyListener to the
ActiveSheet property of the ThisComponent.CurrentController object. This
technique is described in this posting:
http://www.oooforum.org/forum/viewtopic.php?t=5135 One limitation of this approach
is if the view changes, such as performing a print preview, the event listener for changes
in the ActiveSheet property is lost. As of this writing it is not clear how to regain
control to re-establish the event listener.

The approach shown above has three procedures. The procedure
WorksheetActivationListenerOn is called only once to initialize the Listener. This
procedure can be executed by the macro assigned to the "Open Document" event for the
spreadsheet.

Procedure WorksheetActivationListenerOff is called whenever it is desired to
disable the activate/deactivate functions.

Procedure ACTIVESHEET_propertyChange(oEvent) is called whenever the
value of the ActiveSheet property in the ThisComponent.CurrentController object is
changed. oEvent describes the change property event. The oEvent object is described
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyChangeEvent.ht
ml

Activate worksheet [sheet] named "MySheet"
VBA Sub MyProc

 Worksheets("MySheet").Activate
End Sub

SB Sub MyProc
 Dim oSheet as Object

 oSheet = ThisComponent.Sheets.getByName("MySheet")
 ThisComponent.CurrentController.setActiveSheet(oSheet)
End Sub

Range/Cell
Storing a number into a cell.
VBA Range("B1").Value = 12

SB ThisComponent.CurrentController.ActiveSheet.getCellRangeByName
("B1").Value = 12

Reference:
http://api.openoffice.org/docs/DevelopersGuide/Spreadsheet/Spreadsheet.htm#1+3+1+5+Cells and
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html

Retrieving a number from a cell.
VBA MyNumber = Range("MyCell").Value

SB MyNumber = ThisComponent.CurrentController.ActiveSheet.
getCellRangeByName("MyCell").Value

Porting Excel/VBA to Calc/StarBasic 15

Examples of Porting Visual Basic for Applications to StarBasic

Storing a string into a cell.
VBA Range("B1").Value = "DOG"

SB ThisComponent.CurrentController.ActiveSheet. getCellRangeByName
("B1").String = "DOG"

Reference:
http://api.openoffice.org/docs/DevelopersGuide/Spreadsheet/Spreadsheet.htm#1+3+1+5+Cells and
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html

Retrieving a string from a cell.
VBA MyString = Range("MyCell").Value

SB MyString = ThisComponent.CurrentController.ActiveSheet.
getCellRangeByName("MyCell").String

Access the cell C4 in the Range("B1:E5") by relative position
VBA Range("B1:E5").Cells(4,2).Value

'or
Range("B1:E5").Offset(3,1).Value

SB ThisComponent.CurrentController.ActiveSheet.getCellRangeByName
("B1:E5").getCellByPosition(1,3).Value

Usage Note: In VBA there are two ways for relatively accessing a cell. The first
method Cells() uses the relative row and column locations and the numbering is "1"
based, i.e., the top left cell is .Cells(1,1). The second method is Offset() and uses a "0"
based row and column locations, i.e., the top left cell is .Offset(0,0). In SB, the
arguments for .getByCellPosition() are reversed from the VBA arguments, i.e., the
column number is the first argument, followed by the row number. The numbering is
"0" based, i.e., the top left cell is .getByCellPosition(0,0). This makes .
getByCellPosition() similar to the VBA .Offset() method.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/Spreadsheet/Spreadsheet.htm#1+3+1+4+Cell+Ranges
and http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html

Acccess the cell F2 in the Range("B1:E5") by relative position. (Note: Cell F2 is out of
the Range("B1:E5"))
VBA Range("B1:E5").Cells(2,5).Value

Range("B1:E5").Offset(1,4).Value

SB Not possible in SB
Usage Note: If the same SB technique is used as in the previous example of accessing
cell C4, the execution of the macro program will be interrupted with an
com.sun.star.lang.IndexOutOfBoundException. VBA does not enforce any bounds
checking on the row and column indices for the cell range. If accessing a cell outside
the specified range is a requirement for a SB macro program, the only solution is to
calculate the absolute cell locations on the worksheet [sheet].

Porting Excel/VBA to Calc/StarBasic 16

Examples of Porting Visual Basic for Applications to StarBasic

Print the address of a cell or range of cells on the ActiveSheet
VBA Sub MyProc

 'Following will display B3
 msgbox Range("B3").Address

 'Following will display B3:D5
 msgbox Range("B3:D5").Address

 'Cell B5 is named "MyCell", following will display B5
 msgbox Range("MyCell").Address
End Sub

SB ''This code fragment makes use of a user defined function
'''CellRangeAddressString() documented in Appendix B.

Sub MyProc
 Dim oSheet as Object

 oSheet = ThisComponent.CurrentController.ActiveSheet

 'Following will display B3
 msgbox CellRangeAddressString(_
 oSheet.getCellRangeByName("B3"))

 'Following will display B3:D5
 msgbox CellRangeAddressString(_
 oSheet.getCellRangeByName("B3:D5"))

 'Cell B5 is named "MyCell", following will display B5
 msgbox CellRangeAddressString(_
 oSheet.getCellRangeByName("MyCell")

 'following will display D7
 msgbox CellRangeAddressString(_
 oSheet.getCellByPosition(3,6))

End Sub

Usage Note: After some time spent researching and experimentation, the approach of
using the Calc sheet function "ADDRESS()" was selected. It may be possible that a
method or property exists in the UNO object model to obtain a string representation of
the address of a cell or range of cells but it is not clear as of this writing.

Porting Excel/VBA to Calc/StarBasic 17

Examples of Porting Visual Basic for Applications to StarBasic

Find the cell at the end of a row or column of data in a worksheet [sheet]. Assume all the
cells in range B3:E15 contains data. This does not depend on knowing the actual number
of rows or columns in the data range.
VBA Sub MyProc

 'go to upper left corner of range
 Range("B3").Select

 'Find the last cell in the current row of data
 'This takes the cursor to cell E3
 Selection.end(xlToRight).Select

 'Find the last cell in the column
 'this takes the cursor to cell E15
 Selection.end(xlDown).Selection

 'Find the first cell in the current row
 'this takes the cursor to cell B15
 Selection.end(xlToLeft).Select

 'Find first cell in the current column
 'this takes the cursor to cell B3
 Selection.end(xlUp).Select

End Sub

Porting Excel/VBA to Calc/StarBasic 18

Examples of Porting Visual Basic for Applications to StarBasic

SB '''This code fragment makes use of a user defined function
'''MoveCursorToEnd() documented in Appendix B.

Sub MyProc
 Dim oSheet as Object, oCell as Object

 '''get some useful objects
 oSheet = ThisComponent.CurrentController.ActiveSheet

 '''go to upper slef corner of range
 oCell = oSheet.getCellRangeByName("B3")
 ThisComponent.CurrentController.select(oCell)

 'Find the last cell in the current row
 'this takes cursor to cell E3
 oCell = MoveCursorToEnd(oCell,"xlToRight")
 ThisComponent.CurrentController.select(oCell)

 'Find last (bottom) cell in the current column
 'This takes cursor to cell E15
 oCell = MoveCursorToEnd(oCell,"xlDown")
 ThisComponent.CurrentController.select(oCell)

 'Find first cell in the current row
 'This takes cursor to cell B15
 oCell = MoveCursorToEnd(oCell,"xlToLeft")
 ThisComponent.CurrentController.select(oCell)

 'Find first (top) cell in the current column
 'This takes cursor to cell B3
 oCell = MoveCursorToEnd(oCell,"xlUp")
 ThisComponent.CurrentController.select(oCell)

End Sub

Clear the contents in the range of cells on the ActiveSheet. This does not affect any
formatting of the cells.
VBA Range("B1:E5").ClearContents

SB ThisComponent.CurrentController.ActiveSheet.getCellByName
("B1:E5").clearContents(_
 com.sun.star.sheet.CellFlags.VALUE _
 +com.sun.star.sheet.CellFlags.STRING _
 +com.sun.star.sheet.CellFlags.DATETIME)

Reference:
http://api.openoffice.org/docs/DevelopersGuide/Spreadsheet/Spreadsheet.htm#1+3+1+4+8+Operations,
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html#clearContents and
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html

Porting Excel/VBA to Calc/StarBasic 19

Examples of Porting Visual Basic for Applications to StarBasic

Clear a range of cells on the worksheet [sheet] "MySheet". This clears everything
associated with the cell including formatting.
VBA Worksheets("MySheet").Range("B1:E5").Clear

SB ThisComponent.Sheets.getByName("MySheet").getCellRangeByName
("B1:E5").clearContents(_

com.sun.star.sheet.CellFlags.VALUE _
+ com.sun.star.sheet.CellFlags.STRING _
+ com.sun.star.sheet.CellFlags.DATETIME _
+ com.sun.star.sheet.CellFlags.ANNOTATION _
+ com.sun.star.sheet.CellFlags.FORMULA _
+ com.sun.star.sheet.CellFlags.HARDATTR _
+ com.sun.star.sheet.CellFlags.STYLES _
+ com.sun.star.sheet.CellFlags.OBJECTS _
+ com.sun.star.sheet.CellFlags.EDITATTR)

Assign a user defined name "MyCells" to the cells B2:C3 via the Excel [Calc] user
interface
Excel One of two methods:

1) Highlight cells B2:C3, select the tool bar options: Insert > Name > Define ,
enter name "MyCells" in pop-up window and press "Add" button.

2) Highlight cells B2:C3, then enter "MyCells" in the Name Field on the
active window.

Calc One of two methods:

1) Highlight cells B2:C3, select the tool bar options: Insert > Names >
Define, enter name "MyCells" in pop-up window and press "Add" button.

2) Highlight cells B2:C3, press Ctrl-F3, enter name "MyCells" in pop-up
window and press "Add" button.

Assign a user defined name "MyCells" to the cells B2:C3 on "Sheet1" and the same name
to cells A1:B3 on "Sheet2" via the Excel [Calc] user interface
Excel Select "Sheet1" and highlight cells B2:C3 then do one of the following:

1) Select the tool bar options: Insert > Name > Define , enter name
"Sheet1!MyCells" in pop-up window and press "Add" button.

2) Enter "Sheet1!MyCells" in the Name Field on the active window.

Select "Sheet2" and highlight cells A1:B3 then repeat either steps 1 or 2 from
above only this time use the name "Sheet2!MyCells".

Calc It is not possible. Calc appears not to allow the same range name, e.g.
"MyCells", to exist on two or more worksheets [sheets].

Porting Excel/VBA to Calc/StarBasic 20

Examples of Porting Visual Basic for Applications to StarBasic

Access ranges with the same name relative to worksheets [sheets]. Assume in worksheet
[sheet] "Sheet1" cell B1 is named "MyCell" and contains the string "Sheet1MyCell". In
worksheet [sheet] "Sheet2" cell C3 is named "MyCell" and contains the string
"Sheet2MyCell".
VBA Rem The following will display "Sheet1MyCell"

Rem followed by "Sheet2MyCell"
Worksheets("Sheet1").Activate
MsgBox Range("MyCell").Value
Worksheets("Sheet2").Activate
MsgBox Range("MyCell").Value

SB It is not possible. Calc appears not to allow the same range name, e.g.
"MyCell", to exist on two or more worksheets [sheets].

Charts/Chart

Create a bar chart on the current worksheet [sheet] using the range "MyChartData".
VBA Sub SomeProcedure

 Range("MyChartData").Select
 Charts.Add
 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.Name = "Sample Chart"
 ActiveChart.SetSourceData _
 Source:=Sheets("Example3").Range("ChartData"), _
 PlotBy:= xlColumns
 ActiveChart.Location Where:=xlLocationAsObject, _
 Name:="Example3"
 With ActiveChart
 .HasTitle = True
 .HasLegend = False
 .ChartTitle.Characters.Text = "Sample Chart"
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text =
"Category"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text =
"Amount"
 End With
End Sub

Porting Excel/VBA to Calc/StarBasic 21

Examples of Porting Visual Basic for Applications to StarBasic

SB Sub SomeProcedure
 'define rectangle to hold chart
 Dim aRect as new com.sun.star.awt.Rectangle
 with aRect
 .X = 8000 : .Y = 1000 : .Width = 16000 : .Height = 10000
 end with

' Now add a chart to the spreadsheet.
 'get data to chart
 oSheet = ThisComponent.CurrentController.ActiveSheet
 oCellRangeAddress = _
 oSheet.getCellRangeByName("MyChartData"). _
 getRangeAddress()

 ' Get the collection of charts from the sheet
 oCharts = oSheet.getCharts()

 ' Add a new chart with a specific name,
 ' in a specific rectangle on the drawing page,
 ' and connected to specific cells of the spreadsheet.
 oCharts.addNewByName("Sample Chart", aRect , _
 Array(oCellRangeAddress) , True, True)

 ' Get the new chart we just created.
 oChart = oCharts.getByName("Sample Chart")
 ' Get the chart document model.
 oChartDoc = oChart.getEmbeddedObject()
 oChartDoc.HasLegend = False
 ' Get the drawing text shape of the title of the chart.
 oChartDoc.getTitle().String = "Sample Chart" 'Change title
 ' Create a diagram.
 oDiagram = _
 oChartDoc.createInstance("com.sun.star.chart.BarDiagram")

 ' Set its parameters.
 oDiagram.Vertical = True
 ' Make the chart use this diagram.
 oChartDoc.setDiagram(oDiagram)
 oDiagram.getXAxisTitle().String = "Category"
 oDiagram.HasXAxisTitle = true
 oDiagram.getYAxisTitle().String = "Amount"
 oDiagram.HasYAxisTitle = true
 ' Make more changes to the diagram.
 oDiagram.DataRowSource = _
 com.sun.star.chart.ChartDataRowSource.COLUMNS
End Sub

Reference: http://api.openoffice.org/docs/DevelopersGuide/Charts/Charts.htm#1+Charts

Porting Excel/VBA to Calc/StarBasic 22

Examples of Porting Visual Basic for Applications to StarBasic

Delete the chart created in the preceding example.
VBA Sub MyProc

 ActiveSheet.Charts("Sample Chart").Delete

End Sub

SB Sub MyProc

 ThisComponent.CurrentController.ActiveSheet. _
 getCharts().removeByName("Sample Chart")

End Sub

Porting Excel/VBA to Calc/StarBasic 23

Examples of Porting Visual Basic for Applications to StarBasic

Controls
This section describes placing controls, such as check boxes, option buttons, combo boxes,
on a worksheet [sheet].

Create a control (Check Box, Combo Box, Option Button, Button, etc.) on the worksheet
[sheet] and give the control a user defined name.
Excel • Drag and drop the controls from the Controls menu onto the worksheet

• Select the control on the worksheet and press right mouse button

• Select "Properties" option

• Enter user defined name into the "(Name)" property
Calc • Drag and drop the controls from the Forms Function menu onto the sheet

• Select the control on the sheet and press right mouse button

• Select the "Control..." option

• Select the "General" tab and enter user defined name into the "Name"
property

Usage Note: The Name property for option buttons in Calc is used to group option
buttons for selecting one and only one option from a group of options, radio button
operation. This same function in Excel is accomplished by assigning the same value to
the Group property of the option buttons.
Reference: OpenOffice Calc Help

Turn on/off Design Mode
Excel Press Design Mode icon on Controls menu to toggle on/off
Calc Press Design Mode icon on the Form Functions menu to toggle on/off
Reference: OpenOffice Calc Help

Porting Excel/VBA to Calc/StarBasic 24

Examples of Porting Visual Basic for Applications to StarBasic

Assign a worksheet [sheet] cell to hold current state of the control, i.e., is the check box
checked or unchecked, selected item in a combo box.
Excel • Turn Design Mode on

• Select the control on the workhseet and press right mouse button

• Select Properties option

• In the property LinkedCell enter a worksheet cell address (e.g., B4, B4)
or a user defined named range (e.g., "MyControlState")

Calc • Turn Design Mode on

• Select the control on the sheet and press right mouse button

• Select the Control... option

• Select Data tab and enter sheet cell address (e.g.,B4) into the Linked
Cell.... property.

Usage Note: Unable to use named ranges (e.g., "MyControlState") to specify a cell
location in Calc.

Assign to a list box or combo box the cell range on the worksheet [sheet] that holds the
list of items to display.
Excel • Turn Design Mode on

• Select the control on the workhseet and press right mouse button

• Select "Properties" option

• In the property "ListFillRange" enter a worksheet cell address (e.g., B4:B6,
B4:B6) or a user defined named range (e.g., "MyListOfChoices")

Calc • Turn Design Mode on

• Select the control on the sheet and press right mouse button

• Select the "Control..." option

• Select "Data" tab and enter sheet cell address (e.g.,B4:B6) into the "Source
Cell Range...." property.

Assign multi-line caption to a button control
Excel • Select button control on worksheet

• Click right mouse button

• Properties > Word Warp > True
Calc Not supported

Porting Excel/VBA to Calc/StarBasic 25

Examples of Porting Visual Basic for Applications to StarBasic

UserForms
Create a UserForm [Dialog] "MyForm"
VBA • Start the Visual Basic IDE

• Select from the tool bar Insert > UserForm

• Select UserForm object

• Right-click mouse button on selected UserForm object

• Click on the Properties option

• Enter "MyForm" in the (Name) attribute

• Design the layout of the UserForm
SB • Start the StarBasic IDE

• Press Organizer button

• Press New Dialog... button

• Enter "MyForm" in the name menu for new dialog panel and press "OK"
button

• Select the new dialog just created with mouse pointer, press Edit button

• Design the layout of the Dialog
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+1+0+2+A+Si
mple+Dialog

Create a control (CheckBox, ComboBox, RadioButton, Button, etc.) on the UserForm
[Dialog] and give the control a user defined name.
VBA • Drag and drop the controls from the Controls menu onto the UserForm

• Select the control and press right mouse button

• Select Properties option

• Enter user defined name into the (Name) property
SB • Drag and drop the controls from the Controls menu onto the Dialog

• Select the control and press right mouse button

• Select the Properties... option

• Enter user defined name into the Name property

Porting Excel/VBA to Calc/StarBasic 26

Examples of Porting Visual Basic for Applications to StarBasic

Group related option buttons such that only one option button can be selected.
VBA Drag a Frame control to encompass the set of option buttons that are related.
SB On a Dialog, option buttons are grouped by consecutive Order attribute. To

access this attribute, select the option button, press right mouse button, select
Properties..... Consecutive numbers in the Order attribute are part of one
group. To designate another group, there has to be a break in the number.

Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+2+4+Opti
on+Button and http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRadioButton.html

Create TabStrip or Multi-Page Control on the UserForm [Dialog]
VBA Drag and drop the controls from the Controls menu onto the UserForm
SB These controls do not exist in SB.
Usage Note: While a multi-page control in the sense of Excel, where folder tabs are
used to select among different pages, does not exist in Calc/SB, a possible work-
around is the use of "Multi-page Dialogs". The Dialog's Step attribute provides the
means to display different controls on the Dialog panel based on its value and the
corresponding value in the Step attributes of the various Controls. See reference for
details.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+1+6+Mult
i-Page+Dialogs and
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html

Display UserForm [Dialog] called "MyForm"
VBA Sub MyProc

 MyForm.Show
End Sub

SB Rem oDlg should be visible at the module level
Dim oDlg As Object

Sub MyProc
 DialogLibraries.LoadLibrary("Standard")
 oDlg = CreateUnoDialog(DialogLibraries.Standard.MyForm)
 oDlg.execute()
End Sub

Usage Note: The oDlg variable is visible at the module level to all other procedures
that are accessing controls on the Dialog. This means all the procedures manipulating
or accessing controls on this Dialog panel are housed in a single module.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+1+1+Sho
wing+a+Dialog

Porting Excel/VBA to Calc/StarBasic 27

Examples of Porting Visual Basic for Applications to StarBasic

Display message "Button Clicked" when the users clicks on button "MyButton"and then
disable the button.
VBA • Select button on the UserForm

• Right mouse click to bring up options menu

• Select View Code option

• Select Click event for this button control

• In the predefined procedure MyButton_Click():

Sub MyButton_Click()
 msgBox "Button Clicked"
 MyButton.Enabled = False
End Sub

SB • Select button "MyButton" on the Dialog

• Right mouse click to bring up options menu

• Select Properties option

• Select Events tab

• Assign user defined macro "MyButton_Click", see below, to event When
Initiating....:

Rem oDlg should be visible at the module level
Dim oDlg As Object

Sub MyButton_Click
 msgbox "Button Clicked"
 oDlg.getControl("MyButton").Enable = False
End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed. In the case of SB, the procedure name
is arbitrary. In the case of VBA, the procedure name is predefined by the Excel object
model.
Reference: http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html

Porting Excel/VBA to Calc/StarBasic 28

Examples of Porting Visual Basic for Applications to StarBasic

Determine if checkbox "MyCheckBox" has been checked.
VBA Sub SomeProcedure

 if MyCheckBox.Value then

 '''Do processing for checkbox selected

 else

 '''Do processing for checkbox unselected or undetermined

 end if

End sub

SB Dim oDlg as Object

Sub SomeProcedure

 if oDlg.getControl("MyCheckBox").State = 1 then

 '''Do processing for checkbox selected

 else

 '''Do processing for checkbox unselected or undetermined

 end if

End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed. In VBA the CheckBox value is either
False, True or Null (undetermined) and in SB it is a numeric value 0 (unchecked), 1
(checked) or 2 (undetermined).
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+2+3+Chec
k+Box and http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html

Porting Excel/VBA to Calc/StarBasic 29

Examples of Porting Visual Basic for Applications to StarBasic

Initialize the ListBox named "MyListBox"
VBA Sub SomeProcedure

 with MyListBox
 .addItem "Choice1"
 .addItem "Choice2"
 .addItem "Choice3"
 end with

End sub

SB Dim oDlg as Object

Sub SomeProcedure

 with oDlg.getControl("MyListBox")
 .addItem("Choice1",0)
 .addItem("Choice2",1)
 .addItem("Choice3",2)
 end with

End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed. When there are many items to load
into the ListBox, the method addItems(), provides a faster way of loading the ListBox.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+2+7+List+
Box and http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html

Porting Excel/VBA to Calc/StarBasic 30

Examples of Porting Visual Basic for Applications to StarBasic

Based on the selected item in "MyListBox" do appropriate processing.
VBA Sub SomeProcedure

 select case MyListBox.ListIndex
 case 0
 'Do processing for "Choice1"
 case 1
 'Do processing for "Choice2"
 case 2
 'Do processing for "Choice3"
 case else
 'Something wrong do error processing
 end select

End sub

SB Dim oDlg as Object

Sub SomeProcedure

 select case _
 oDlg.getControl("MyListBox").SelectedText

 case "Choice1"
 'Do processing for "Choice1"
 case "Choice2"
 'Do processing for "Choice2"
 case "Choice3"
 'Do processing for "Choice3"
 case else
 'Something wrong do error processing
 end select

End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed.
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+2+7+List+
Box and http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html

Porting Excel/VBA to Calc/StarBasic 31

Examples of Porting Visual Basic for Applications to StarBasic

Initialize the ComboBox named "MyComboBox"
VBA Sub SomeProcedure

 with MyComboBox
 .addItem "Choice1"
 .addItem "Choice2"
 .addItem "Choice3"
 end with

End sub

SB Dim oDlg as Object

Sub SomeProcedure

 with oDlg.getControl("MyComboBox")
 .addItem("Choice1",0)
 .addItem("Choice2",1)
 .addItem("Choice3",2)
 end with

End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed. Like the ListBox, the ComboBox has
method addItems() to load many entries at once.
References:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm#1+5+2+8+Com
bo+Box and http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html

Porting Excel/VBA to Calc/StarBasic 32

Examples of Porting Visual Basic for Applications to StarBasic

Based on the selected item in "MyComboBox" do appropriate processing.
VBA Sub SomeProcedure

 select case MyComboBox.ListIndex
 case 0
 'Do processing for "Choice1"
 case 1
 'Do processing for "Choice2"
 case 2
 'Do processing for "Choice3"
 case else
 'Something wrong do error processing
 end select

End sub

SB Dim oDlg as Object

Sub SomeProcedure

 select case _
 oDlg.getControl("MyComboBox").Text

 case "Text for Choice1"
 'Do processing for "Choice1"
 case "Text for Choice2"
 'Do processing for "Choice2"
 case "Text for Choice3"
 'Do processing for "Choice3"
 case else
 'Something wrong do error processing
 end select

End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed. Please note the difference for
determining the selected choice between VBA and SB. In VBA the index value of the
selected choice is used, in SB, the text of the selected item is used.
Reference: http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.htm l

Porting Excel/VBA to Calc/StarBasic 33

Examples of Porting Visual Basic for Applications to StarBasic

For option buttons, "Option1", "Option2" and "Option3", determine which one is
selected.
VBA Sub SomeProcedure

 If Option1.Value = True Then
 ' perform Option1 tasks
 ElseIf Option2.Value = True Then
 ' perform Option2 tasks
 ElseIf Option3.Value = True Then
 ' perform Option3 tasks
 End If

End sub

SB Dim oDlg as Object

Sub SomeProcedure

 if oDlg.getControl("Option1").getState() = True Then
 ' perform Option1 tasks
 ElseIf oDlg.getControl("Option2").getState() = True Then
 ' perform Option2 tasks
 ElseIf oDlg.getControl("Option3").getState() = True Then
 ' perform Option3 tasks
 End If

End Sub

Usage Note: The oDlg variable is the same variable, visible at the module level, that
was used when the Dialog frame was displayed.

Make Textbox read-only
VBA Select Text Box control and set property "Locked" to "True"
SB Select text box control and set property "Ready Only" to "Yes"

Porting Excel/VBA to Calc/StarBasic 34

Integrated Development Environment (IDE) Differences

Integrated Development Environment (IDE)
Differences

Listed in this section are functional or appearance differences between the IDEs for VBA and
SB. For the Excel/VBA programmer here is an overview of the IDE for SB:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.htm

Starting the IDE
VBA From the menu bar (Tools > Macro > Visual Basic Editor) or with the short-

cut key Alt-F11.
SB From the menu bar (Tools > Macros > Macro). There is no short-cut key

stroke to start the IDE.

Create a VBA [SB] Module
VBA • From the Project Window select the appropriate workbook

• Insert > Module
SB • From the Macro Dialog select the Standard library of the appropriate

spreadsheet

• Press New button
Reference:
http://api.openoffice.org/docs/DevelopersGuide/BasicAndDialogs/BasicAndDialogs.ht
m#1+1+0+1+Step+By+Step+Tutorial

Encountering a breakpoint during execution of a macro initiated from the workbook
[spreadsheet]
VBA The IDE Editor window is automatically opened and there is a small yellow

area pointing to the line that triggered the breakpoint and the line is
highlighted.

SB The IDE Editor window is not automatically opened. The programmer must
manually open the window. There is a small yellow arrow pointing to the line
that triggered the breakpoint.

Finding and replacing text in a module
VBA The programmer is able to specify the scope of the find & replace, e.g., the

module or only the selected text range in the module.
SB The scope of the find & replace is the current module.

Porting Excel/VBA to Calc/StarBasic 35

Integrated Development Environment (IDE) Differences

Differences in the Object Viewer
VBA Able to view properties and methods for Excel and user defined objects.

Information available through the object viewer are return values from
methods, method signature, properties and MS/Office defined constants.

SB No equivalent functionality

Prompting with object attributes
VBA When typing an object in the Editor, the editor will provide a selection of the

specific object properites.
SB No equivalent functionality

View object and object properties while debugging using breakpoints
VBA Specify object or object property in Watch window
SB No equivalent functionality
Usage Note: There is an add-in macro library called XRay that provides the function of
viewing objects and object properties. See Appendix A for an overview. This macro
library can be found at http://www.ooomacros.org/dev.php101416

Prompting with object attributes
VBA When typing an object in the Editor, the editor will provide a selection of the

specific object properites.
SB No equivalent functionality

Print debugging information
VBA debug.print statement prints data to the Immediate window in the VBA IDE
SB No Immediate window and no debug.print available in the SB IDE

Porting Excel/VBA to Calc/StarBasic 36

Porting Sample Workbook [Spreadsheet]

Porting Sample Workbook [Spreadsheet]

In this chapter, the steps taken to port an Excel workbook to Calc are described. The reader
should be aware that the approaches discussed are one of several ways of performing the
porting task.

To illustrate the differences between VBA and SB, the original VBA code is left in the
module as comment statements ("Rem" statement). The equivalent SB statements follow the
commented VBA code.

Porting Tasks
Steps taken to port the sample Excel/VBA workbook to Calc/SB spreadsheet.

Open Excel workbook in Calc. For the most part the general appearance of worksheets will
be the same in Calc. The following differences were noted after opening the Excel
workbook in Calc.

• On several worksheets the caption for the buttons do not appear the same. In Excel
buttons can be multi-lined. In Calc, multi-line captions do not appear to be supported.

• While all the VBA code was read in, all the statements were turned into comments by
prefixing "Rem" to each line. For existing VBA Modules, those modules exist in SB
under the same name, e.g., "ChartDemocode" and "SampleCode". For VBA code
associated with the workbook or worksheets, such as those executed by events or controls
on the worksheet, the code is contained in separate modules, one for each worksheet or for
the workbook. The workbook code is contained in a SB module called "ThisWorkbook".
Basic code for each worksheet is contained in a separate module named after the internal
Excel worksheet name. In this case the modules are called "Sheet1", "Sheet2", etc. VBA
code associated with the UserForm is contained in a module named the same as the Excel
Userform name. In this situation the module name is "UserForm1" Lastly, the "Rem"ed
statements are encased within a procedure definition that is named the same as the module
name.

• The UserForm panel itself did not transfer over. The UserFrom will have to be recreated
in a SB Dialog panel.

• All named cell ranges transferred over subject to the limitation of not being able to have a
same named cell in multiple worksheets.

• The text boxes on the various worksheets in Excel are transferred over to Calc. However,
not all the resulting objects in Calc allow the text to be modified. As of this writing, no
determination has been made on why some of the resulting text boxes allow modifications
and others do not.

Convert the workbook related procedures. These procedures are found in the module
"ThisWorkbook". Following are the steps to convert procedures in this module:

• Remove the encapsulating Sub ThisWorkbook (first statement) and End Sub (last
statement) statements. These are the encasing procedure statements that are automatically
inserted by Calc when reading in the Excel workbook.

Porting Excel/VBA to Calc/StarBasic 37

Porting Sample Workbook [Spreadsheet]

• Procedure Workbook_Open() - Convert VBA Worksheet and Cell/Range
methods/properties to equivalent SB constructs. Remove Private attribute from the
Workbook_Open() procedure definition statement. Leaving the Private attribute causes
intermittent run-time errrors. Assign the Open Document event to this macro. With SB
IDE active, select the module "ThisWorkbook". The select Assign... > Events. Select the
Document option button. Specify the Workbook_Open procedure for the Open
Document event.

• Add to Workbook_Open procedures to turn on or off Listener for change events to the
ActiveSheet property of the ThisComponent.CurrentController. This event is used to
call procedures for Worksheet_Activate and Worksheet_Deactivate for various
worksheets.

• Create a new module called "SupportModule". Add MoveCursorToEnd() function
described in Appendix B to "SupportModule".

Convert worksheet Example1. Rename the module for the associated SB code from "Sheet1"
to "Example1Code". Rationale for renaming the module is to support long-term maintenance
by clearly associating the SB code with the worksheet [sheet]. One disadvantage of this
method is if the worksheet [sheet] is renamed, the programmer must remember to rename the
SB module as well to maintain the association. To rename the module, select the module tab
displayed in the SB IDE, right-click the mouse button and enter the new name.

• Remove the encapsulating Sub Sheet1 and End Sub statements.

• Uncomment Sub Worksheet_Activate and associated End Sub statements. Remove the
Private attribute for this procedure. Leaving the Private attribute causes intermittent run-
time errors.

• Replace the Excel/VBA Range() method calls with the equivalent Calc/SB calls.

• Unable to determine SB code to monitor cell selection changes on this worksheet [sheet].

Convert worksheet Example2. These are the steps taken in the SB module "SampleCode":

• Delete the Sub SampleCode and End Sub.

• In the procedure "generateDataToSort", convert the Excel/VBA Range objects to the
equivalent SB CellRange objects. On the sheet "Example2", assign the When Initiating
events of the two button controls for generating random sort data to this macro procedure.

• In the procedures "SortWithScreenUpdating" and "SortWithNoScreenUpdating", convert
the ScreenUpdating=True and ScreenUpdating=False to UnlockControllers and
LockControllers method invocations, respectively. Convert the Excel Range and Cell
object references to Calc CellRange object references. Assign the When Initiating events
for the buttons initiating the sort to the appropriate procedures. Manually adjust button
sizes to fit text in the caption [label].

• In the procedure "BubbleSort" convert the procedure definition to change reference from
Excel Range object to generic object type in Calc. Replace references to the Excel
Interior.ColorIndex attribute (cell background color) with the Calc BackColor attribute
for a cell. In addition translate specific Excel ColorIndex values to SB calls to the RGB()

Porting Excel/VBA to Calc/StarBasic 38

Porting Sample Workbook [Spreadsheet]

function to specify colors.

Convert Worksheet Example3. This SB module underlying this worksheet is module
"Sheet9". These are the steps taken to convert this module:

• Rename SB Module from "Sheet9" to "Example3Code".

• Remove the encapsulating Sub Sheet9 and End Sub statements.

• Resize the button to fit the button caption.

• Cell G10 contains text "Range Selected". In Excel, this cell is right aligned and the text
string is completely visible. In Calc, while the cell is right aligned, only the leftmost
portion of the text string is shown with a small red arrow visible on the right-side of the
cell. To correct this problem, cells F10 & G10 are merged. The text "Range Selected" is
reentered and right aligned in the merged cell.

• Modify the Excel Range method calls to the equivalent SB calls.

• Add user developed function CellRangeAddressString() to "SupportModule" to extract a
string representation of a cell or range. This function is described in Appendix B.

Convert worksheet Example4:

• Remove the Sub ChartDemoCode and End Sub statements.

• Uncomment Sub GenerateChart and End Sub statements.

• Add SB statements for defining a chart. Since Calc/SB does not automatically provide
default size for a chart, experiment with several different values for the Rectangle object
(aRect).

• Connect the button on worksheet Example4 to the procedure "GenerateChart" by selecting
the button, right-click mouse button, Control... > Events and enter into the When
Initiating.... property the procedure "GenerateChart" found in module "ChartDemoCode".

Convert worksheet Example5:

• Rename SB module Sheet3 to Example5Code and remove the encapsulating Sub Sheet3
and End Sub

• Split the VBA Worksheet_Change() procedure into separate procedures for each distinct
cell ranges to monitor for cell content changes. This results in two new procedures
MYCELL_modified and MYVECTOR_modified to listen for modification events. The
procedures are named based on the names for the cell ranges.

• Create procedure Worksheet_Activate to register the listener procedures above.

• Create procedure Worksheet_Deactivate to remove the listener procedures above.

• Add code to Workbook_Open procedure in module "ThisWorkbook" to call the Sub
Worksheet_Activate or Sub Worksheet_Deactivate procedures.

• In module "SampleCode", modify procedure "ElementOperation" to call Calc sheet
functions. Assign event When Initiating.... for button on worksheet to procedure
"ElementOperation".

Porting Excel/VBA to Calc/StarBasic 39

Porting Sample Workbook [Spreadsheet]

Convert Worksheet Example6:

• For the ComboBox. To re-establish the ComboBox, select it and right-click the mouse.
Select Control... > Data. Enter into property Linked Cell.... the cell location to display
the selected choice. In Calc, only the cell address can be entered, i.e., D16. User defined
range names, such as "SelectedChoice", are not allowed. To connect the ComboBox to
the list of choices to display enter the cell range address, F16:F18, in the property Source
cell range.....

• To convert the option buttons, for each button, select it and right-click the mouse. Select
Control... > Data. Enter into property Linked Cell... the cell location to the display state
of the option button. Again the cell address, e.g., D12, must be used since user-defined
range names, e.g., "StateOfOption1", are not supported. Note that the Name property
(Control... > General) must be the same for all the option buttons for them to function as
radio buttons, i.e., only one button can be selected at a time.

• To convert the CheckBox, select it and right-click the mouse. Select Control... > Data
and enter the cell address, e.g., D7, to hold the state of the CheckBox. As in the other
controls, user defined range names are not supported.

• Rename SB module "Sheet2" to "Example6Code". Remove the encapsulating Sub
Sheet2 and End Sub statements and uncomment all the SB statements. No other source
code modification is needed. Select the button on the worksheet, right-click the mouse
and select Control... > Events. In the When Initiating... property, enter the procedure
"CommandButton1_Click" found in this module. Remove the Private attribute to the
CommandButton1_Click procedure definition.

Convert worksheet Example7. The most important step in converting this worksheet is
rebuilding the UserForm as a Calc Dialog panel. The UserForm itself is not imported into
Calc from Excel.

• Rename SB module "UserForm1" to "UserForm1Code". Remove the encapsulating "Sub
UserForm1" and "End Sub" statements.

• Create dialog panel. Name the panel "UserForm1".

• Add controls on the dialog panel to match the Excel UserForm.

• Create procedure "Button_Click_To_Show_UserForm" in "UserForm1Code" module.
This facilitates access to the shared global object variable representing the UserForm.
Assign When Initiating event to procedure "Button_Click_To_Show_UserForm" to
display the UserForm.

The following table summarizes the results of porting ExcelExamples.xls to
PortedExcelExamples.sxc:

Excel Component Result of Porting

Workbook Able to port functionality. However, required
additional coding to handle events.

Porting Excel/VBA to Calc/StarBasic 40

Porting Sample Workbook [Spreadsheet]

Excel Component Result of Porting

Worksheet Example1 Able to port a subset of the functions demonstrated
on this worksheet. Unable to duplicate function of
tracking cursor movement on this worksheet [sheet].

Worksheet Example2 Able to port all functions on this worksheet [sheet]..

Worksheet Example3 Able to port all functions on this worksheet [sheet].

Worksheet Example4 Able to port all functions on this worksheet [sheet].

Worksheet Example5 Able to port all functions on this worksheet [sheet].
Additional coding needed to support handing events
on this worksheet [worksheet].

Worksheet Example6 Able to port all functions on this worksheet [sheet].

Worksheet Example7 Able to port all functions on this worksheet [sheet].
Needed to manually recreate the UserForm [Dialog].

Run-time Experiences
Porting and testing of the workbook [spreadsheet] was accomplished on the Windows/XP
platform. After porting on Windows was complete, the workbook [spreadsheet] was tested
on Linux. This section describes platform specific experiences of testing the ported
workbook [spreadsheet].

The Windows/XP environment:

• Operating System: Windows/XP Home with Service Pack 1

• OpenOffice: OpenOffice.org 1.1.1

The Linux environment:

• Operating System: SuSe Linux 9.1 (running under Vmware 4.5.1 on Windows/XP)

• OpenOffice: OpenOffice.org 1.1.1

After testing PortedExcelExamples.sxc on Windows, the workbook [spreadsheet] was
transferred to the Linux environment. The workbook [spreadsheet] performed the same on
Linux with the following exception:

• Although the button controls on the worksheets [sheets] were adjusted to display all the
text in the control's caption [label] for Windows, the text did not fit completely in the
buttons on OpenOffice on Linux. One way to avoid this problem is to specifically set the
font and character set size of the control and not just take the default specification when
the control is created. This specification is set through the Character Set property of the
control.

Porting Excel/VBA to Calc/StarBasic 41

Appendix A: XRay tool

Appendix A: XRay tool

Unlike the Excel/VBA environment, the documentation for what a Calc object can or cannot
do is spread among several locations. In addition, the debugger found in the SB IDE is not
capable of displaying the structure of an object. Fortunately, a tool, freely available on the
Intertnet, is available to allow a programmer to explore the Calc objects during run-time.

While the XRay tool has many useful features, the one disadvantage of the tool is that code
must be inserted into the application to invoke XRay. Based on testing as of this writing, the
inserted XRay code does not appear to affect the running of the SB program when the XRay
tool is not activate. However, the XRay statements must be removed or commented out to
avoid run-time errors for systems where the XRay tool is not installed.

Details on the use of XRay can be found at ooomacros.org
http://www.ooomacros.org/dev.php101416 .

Once the tool is installed and activated, XRay provides the following capabilities. For
purposes of this illustration, assume the following was coded:

Dim oSheet as Object, oCell as Object

oSheet = ThisComponent.CurrentController.ActiveSheet
oCell = oSheet.getCellRangeByName("B3:E15")
Xray.XRay oCell 'this invokes the XRay tool for the oCell Object

XRay is able to show the following:

• Properties of the oCell object:

Porting Excel/VBA to Calc/StarBasic 42

Appendix A: XRay tool

• Methods of the oCell object:

Porting Excel/VBA to Calc/StarBasic 43

Appendix A: XRay tool

• Display lower-level detail of an object's method or property:

Porting Excel/VBA to Calc/StarBasic 44

Appendix A: XRay tool

• Display SDK documentation for a method or property:

•

Porting Excel/VBA to Calc/StarBasic 45

Appendix B: Supporting Functions

Appendix B: Supporting Functions

This Appendix contains user defined functions to support the porting of VBA to SB.

Functions contained in this section:

• CellRangeAddressString

• findSheetIndex

• MoveCursorToEnd

Function CellRangeAddressString(oCellRng)

This function creates a string for the addresss of a cell or range object.

Parameters:

oCellRng – Object reference to cell or range object

function CellRangeAddressString(oCellRng as Object) as String
 Dim FuncService
 Rem Create service to access sheet functions
 FuncService = _
 createunoservice("com.sun.star.sheet.FunctionAccess")

 select case oRng.getImplementationName()
 case "ScCellObj"
 CellRangeAddressString = FuncService.CallFunction(_
 "ADDRESS", _
 array(oCellRng.CellAddress.Row+1, _
 oCellRng.CellAddress.Column+1))

 case "ScCellRangeObj"
 CellRangeAddressString = FuncService. _
 CallFunction("ADDRESS", _
 array(oCellRng.RangeAddress.StartRow+1, _
 oCellRng.RangeAddress.StartColumn+1))
 CellRangeAddressString = CellRangeAddressString _
 & ":" & FuncService.CallFunction(_
 "ADDRESS", _
 array(oCellRng.RangeAddress.EndRow+1, _
 oCellRng.RangeAddress.EndColumn+1))

 end select

 End Function

Function findSheetIndex(SheetName)

Function to find collection index for a worksheet [sheet]. The function will return either the
index value or -1 if the sheet is not found

Parameters:

Porting Excel/VBA to Calc/StarBasic 46

Appendix B: Supporting Functions

SheetName – string containing name of worksheet to find

Function findSheetIndex(SheetName as String) as Integer
 dim i as integer

 for i = 0 to ThisComponent.Sheets.Count - 1
 if ThisComponent.Sheets.getByIndex(i).Name = _
 SheetName then
 findSheetIndex = i
 exit function
 end if
 next i

 findSheetIndex = -1
End Function

Function MoveCursorToEnd(pCellRange, pDirection)

The following function "MoveCursorToEnd" moves the cursor to the start or end of a row or
column of data in a worksheet [sheet]. This is analogous to the "End()" method for the Excel
Range object. While analogous, this function is not semantically equivalent to the "End"
method. When there are empty cells in between the start location and end location, the
MoveCursorToEnd function behaves differently.

Parameters:

pCellRange – object reference to starting location of cursor.

pDirection – string parameter specify direction of movement. Valid values are "xlToRight",
"xlToLeft", "xlDown", "xlUp".

function MoveCursorToEnd(pCellRange as Object, _
 pDirection as String) as Object
 Dim StartContentType as Long, nRow as Long, nColumn as Long
 Dim ThisSheet as Object, StartRow as Long, StartColumn as Long
 Dim oCell as Object
 Dim EMPTYCELLTYPE

 ThisSheet = pCellRange.SpreadSheet
 nRow = pCellRange.CellAddress.Row
 StartRow = nRow
 nColumn = pCellRange.CellAddress.Column
 StartColumn = nColumn

 StartContentType = pCellRange.getType()
 EMPTYCELLTYPE = com.sun.star.table.CellContentType.EMPTY

 select case pDirection
 '''find last cell in the current row
 case "xlToRight"
 nColumn = nColumn + 1
 do while nColumn <= 255
 if (StartContentType <> EMPTYCELLTYPE and _

Porting Excel/VBA to Calc/StarBasic 47

Appendix B: Supporting Functions

 ThisSheet.getCellByPosition(nColumn,nRow).getType() _
 = EMPTYCELLTYPE) then
 nColumn = nColumn - 1
 exit do
 elseif (StartContentType = EMPTYCELLTYPE and _
 ThisSheet.getCellByPosition(nColumn,nRow).getType() _
 <> EMPTYCELLTYPE) then
 exit do
 end if
 nColumn = nColumn + 1
 loop

 '''find first cell in current row
 case "xlToLeft"
 nColumn = nColumn - 1
 do while nColumn >= 0
 if (StartContentType <> EMPTYCELLTYPE and _
 ThisSheet.getCellByPosition(nColumn,nRow).getType() _
 = EMPTYCELLTYPE) then
 nColumn = nColumn + 1
 exit do
 elseif (StartContentType = EMPTYCELLTYPE and _
 ThisSheet.getCellByPosition(nColumn,nRow).getType() _
 <> EMPTYCELLTYPE) then
 exit do
 end if
 nColumn = nColumn - 1
 loop

 '''find last (bottom) cell in current column
 case "xlDown"
 nRow = nRow + 1
 do while nRow <= 31999
 if (StartContentType <> EMPTYCELLTYPE and _
 ThisSheet.getCellByPosition(nColumn,nRow).getType() = _
 EMPTYCELLTYPE) then
 nRow = nRow - 1
 exit do
 elseif (StartContentType = EMPTYCELLTYPE and _
 ThisSheet.getCellByPosition(nColumn,nRow). _
 getType() <> EMPTYCELLTYPE) then
 exit do
 end if
 nRow = nRow + 1
 loop

 '''find first (top) cell in current column
 case "xlUp"
 nRow = nRow - 1
 do while nRow >= 0
 if (StartContentType <> EMPTYCELLTYPE and _
 ThisSheet.getCellByPosition(nColumn,nRow).getType() _
 = EMPTYCELLTYPE) then
 nRow = nRow + 1
 exit do
 elseif (StartContentType = EMPTYCELLTYPE and _

Porting Excel/VBA to Calc/StarBasic 48

Appendix B: Supporting Functions

 ThisSheet.getCellByPosition(nColumn,nRow).getType() _
 <> EMPTYCELLTYPE) then
 exit do
 end if
 nRow = nRow - 1
 loop

 end select
 '''make sure we are in bounds
 if nColumn > 255 then
 nColumn = 255
 end if
 if nColumn < 0 then
 nColumn = 0
 end if
 if nRow > 31999 then
 nRow = 31999
 end if
 if nRow < 0 then
 nRow = 0
 end if

 MoveCursorToEnd = ThisSheet.getCellByPosition(nColumn,nRow)

end function

Porting Excel/VBA to Calc/StarBasic 49

Appendix C: Multi-Page Control

Appendix C: Multi-Page Control

This appendix will walk the reader through creating and programming a Userform [Dialog]
that contains the equivalent of an Excel/VBA Multi-Page control.

The following shows an Excel/VBA UserForm containing a Multi-Page control. Depending
on the tab selected by the user, different information is shown on the UserForm.

While Calc/SB does not, as of this writing, have a native Multi-Page control, it is possible to
craft equivalent functionality using the existing controls available in Calc/SB. The key
feature that allows this is each Control and Dialog panel itself have a property called Step.
When the Step value of a Control matches the Step value of the Dialog panel, that control is
visible, otherwise the Control is invisible.

The Step property takes on values 0, 1, 2, ... up to the maximum value of a Long variable.
Step value 0 signifies that the Control is visible at all times, regardless of the Step value of
the Dialog panel.

Note: A sample spreadsheet "Multi-page Form.sxc" demonstrates the concepts discussed
below.

To build the same functionality shown above, perform the following steps:

1. Create a Dialog panel Tools > Macros > Macro > Organizer... > New Dialog. Specify
Dialog panel name, e.g., "MultiPageDialog".

2. Select Edit to edit the newly created Dialog panel

3. Select the Dialog panel, press right-click the mouse, select Properties.... This will bring

Porting Excel/VBA to Calc/StarBasic 50

Appendix C: Multi-Page Control

up the following window:

Ensure the Page (step) property is set to 0. Usage Note: Selecting the Dialog panel requires
clicking the left mouse button when the mouse pointer is on the border (edge) of the Dialog
panel.

4. Place a Group Box Control on the Dialog panel to define the area where the multiple
pages will display. Clear the Label property for this Control.

5. Place two CommandButton Controls, adjacent to each other, at the outside, top left of the
Group Box Control to function as the Tabs. Change the Label property for the first
(leftmost) CommandButton to "Form Page 1" and the Name property to "TabForPage1".
For the second button change the Label and Name properties to "Form Page 2" and
"TabForPage2", respectively. Size each button as needed.

6. Place a single CommandButton at the bottom of the Dialog Panel, outside of the Group
Box Control and set its Label and Name property to "State Of Multi-Page" and
"CommandButton1", respectively, and size as needed.

7. Select the Dialog Control, press right-click mouse and select Properties.... Change Page
(step) property to "1". Now place the Controls for "Form Page 1" within the Group Box
Control. In this example, this is theCheckBox Control. Note: The Page (step) property
for any Control placed on the Dialog panel will take the value of the Page (step) proprerty
of the Dialog at the time the Control is created.

8. Select the Dialog Control and change the Page (step) property value to "2". Now place
the two OptionButton Controls within the Group Box Control for "Form Page 2".
Ensure the Order property for the two OptionButton buttons are consecutive numbers,
ensure that only of the OptionButton buttons can be selected at a time.

Porting Excel/VBA to Calc/StarBasic 51

Appendix C: Multi-Page Control

9. Create a SB module called "MultiPageDialogCode" and add the following SB procedures
to the module.

Dim oDialog as Object 'Module level variable for the Dialog

Rem Procedure to initialize the Dialog and various controls for
Rem MultiPage operation
Sub Main
 'Initialize Dialog object
 DialogLibraries.LoadLibrary("Standard")
 oDialog = createUnoDialog(DialogLibraries.Standard.Dialog1)

 'Initialize Controls on Dialog panel and display Dialog
 with oDialog
 'Button is selected
 .getControl("TabForPage1").Model.State = 1

 'Button is not selected
 .getControl("TabForPage2").Model.State = 0

 'Initialize Step property of the Dialog
 .Model.Step = 1

 'Display the Dialog
 .execute()
 end with

End Sub

Rem Handle clicking of button TabForPage1
Sub Page1_Button_Click
 with oDialog

 'Button for Page 1 selected
 .getControl("TabForPage1").Model.State = 1

 'Button for Page 2 not selected
 .getControl("TabForPage2").Model.State = 0

 'Dialog to display Page 1 Controls
 .Model.Step = 1
 end with
End Sub

Rem Handle clicking of button TabForPage2
Sub Page2_Button_Click
 with oDialog
 'Button for Page 1 not selected
 .getControl("TabForPage1").Model.State = 0

 'Button for Page 2 selected
 .getControl("TabForPage2").Model.State = 1

 'Dialog to display Page 2 Controls
 .Model.Step = 2
 end with

Porting Excel/VBA to Calc/StarBasic 52

Appendix C: Multi-Page Control

End Sub

Rem Handle click on CommandButton1
Sub Button1_Click
 With oDialog

 'Determine the Step property for the Dialog
 select case .Model.Step

 'Dialog in Step 1 (Page 1 displayed)
 case 1
 msgbox "Page 1 is active, Check Box is " & _
 .getControl("CheckBox1").Model.State

 'Dialog in Step 2 (Page 2 displayed)
 case 2
 msgbox "Page 2 is active, Option A is " & _
 .getControl("OptionButton1").Model.State & _
 ", Option B is " & _
 .getControl("OptionButton2").Model.State

 end Select

 End With

End Sub

10.Assign "When Initiating" event for the CommandButtons to the appropriate SB
procedure.

CommandButton Assigned To SB Procedure

TabForPage1 Page1_Button_Click

TabForPage2 Page2_Button_Click

CommandButton1 Button1_Click

After completing the above steps, test the "MultiPageDialog" by executing the "Main"
procedure.

Final Tips & Tricks:

• After creating the Dialog, to display the different pages, change the Page (step) property
of the Dialog to 1 or 2 as desired.

• To move a Control, e.g., CommandButton, CheckBox, etc., from one page to another
page, select that Control, right-click mouse, select Properties... and alter Page (step)
property to match the value for the other page.

• An alternative to using CommandButtons to identify the page to display, a ListBox, with
the DropDown property set to True, can be used. In this situation, the page labels are
loaded into the ListBox entries (e.g., "Form Page 1"). Then based on the entry selected
in the ListBox the Page (step) property for the Dialog is set to the appropriate value. See

Porting Excel/VBA to Calc/StarBasic 53

Appendix C: Multi-Page Control

sample code below.

Dim oDialog as Object

Rem Initalize ListBox and Display the Dialog
Sub Main
 DialogLibraries.LoadLibrary("Standard")
 oDialog = createUnoDialog(DialogLibraries.Standard.MultiPageDialog)

 'This assumes the following:
 ' ListBox Position 0 = "Form Page 1" (Step 1)
 ' ListBox Position 1 = "Form Page 2" (Step 2)
 with oDialog
 'Initialize ListBox
 with .getControl("ListBox1")
 .addItem("Form Page 1",0)
 .addItem("Form Page 2",1)
 .selectItemPos(0,True)
 end with
 .Model.Step = 1
 .execute()
 end with
End Sub

Rem Assign "When Initiating" Event for ListBox1 to this
Rem procedure.
Sub ListBox1_Selected_Item
 with oDialog
 .Model.Step = .getControl("ListBox1").SelectedItemPos + 1
 end with

End Sub

• Another example for simulating the MultiPage function can be found in the spreadsheet
MyDataPilot.sxcdeveloped by Ian Laurenson
(http://homepages.paradise.net.nz/hillview/OOo/MyDataPilot.sxc). . It also has the
equivalent of a RefEdit control (a control for selecting a range on a spreadsheet from
within a dialog), text fields which only allow valid characters to be typed in, and a simple
tree control.

• It is possible to have the one routine called by events for more than one control, to know
which control called the event use an event parameter as shown is this example that could
be used as the associated code for the initiate event for the TabForPage button controls in
the above example:

Sub Page_Buttons_Click(oEvent)
 with oDialog
 'Change state of all tab controls
 for i = 1 to 2
 .getControl("TabForPage" & i).Model.State = 0
 next
 'Change the state of the one that was pressed
 oEvent.source.model.state = 1

Porting Excel/VBA to Calc/StarBasic 54

Appendix C: Multi-Page Control

 'Change the page to corresponding tab control
 'This assumes there are no more than 9 pages
 .Model.Step = val(right(oEvent.source.model.name, 1))
 end with
End Sub

Porting Excel/VBA to Calc/StarBasic 55

Bibliography

Bibliography

OpenOffice.org, Developer's Guide, August, 26, 2003,
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html

Pitonyak, A., Useful Macro Information For OpenOffice, May 4, 2004,
http://www.pitonyak.org/AndrewMacro.sxw

Strome, D., How to Use BASIC Macros in OpenOffice.org, October 15, 2002,
http://documentation.openoffice.org/HOW_TO/various_topics/How_to_use_basic_macros.
sxw

Sun MicroSystems, StarOffice 7 Software Basic Programmer's Guide, July 2003,
http://docs.sun.com/db/doc/817-1826?q=StarOffice

Sun Microsystems, Migrating from Microsoft Office to StarOffice 7, January 2004,
http://se.sun.com/edu/staroffice/so_migration_guide_0104.pdf

Sun Microsystems, star module, 2003,
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html

Porting Excel/VBA to Calc/StarBasic 56

Public Documentation License, Version 1.0

Public Documentation License, Version 1.0
1.0 DEFINITIONS.

1.1. "Commercial Use" means distribution or otherwise making
the Documentation available to a third party.

1.2. "Contributor" means a person or entity who creates or
contributes to the creation of Modifications.

1.3. "Documentation" means the Original Documentation or
Modifications or the combination of the Original
Documentation and Modifications, in each case including
portions thereof.

1.4. "Electronic Distribution Mechanism" means a mechanism
generally accepted for the electronic transfer of data.

1.5. "Initial Writer" means the individual or entity identified as
the Initial Writer in the notice required by the Appendix.

1.6. "Larger Work" means a work which combines
Documentation or portions thereof with documentation or
other writings not governed by the terms of this License.

1.7. "License" means this document.

1.8. "Modifications" means any addition to or deletion from the
substance or structure of either the Original Documentation or
any previous Modifications, such as a translation, abridgment,
condensation, or any other form in which the Original
Documentation or previous Modifications may be recast,
transformed or adapted. A work consisting of editorial
revisions, annotations, elaborations, and other modifications
which, as a whole represent an original work of authorship, is a
Modification. For example, when Documentation is released
as a series of documents, a Modification is:

A. Any addition to or deletion from the contents of the Original
Documentation or previous Modifications.

B. Any new documentation that contains any part of the
Original Documentation or previous Modifications.

1.9. "Original Documentation" means documentation described
as Original Documentation in the notice required by the
Appendix, and which, at the time of its release under this
License is not already Documentation governed by this
License.

1.10. "Editable Form" means the preferred form of the
Documentation for making Modifications to it. The
Documentation can be in an electronic, compressed or archival
form, provided the appropriate decompression or de-archiving
software is widely available for no charge.

1.11. "You" (or "Your") means an individual or a legal entity
exercising rights under, and complying with all of the terms of
this License or a future version of this License issued under
Section 5.0 ("Versions of the License"). For legal entities,
"You" includes any entity which controls, is controlled by, or
is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to
cause the direction or management of such entity, whether by
contract or otherwise, or (b) ownership of more than fifty
percent (50%) of the outstanding shares or beneficial
ownership of such entity.

2.0 LICENSE GRANTS.

2.1 Initial Writer Grant.

The Initial Writer hereby grants You a world-wide, royalty-
free, non-exclusive license to use, reproduce, prepare
Modifications of, compile, publicly perform, publicly display,
demonstrate, market, disclose and distribute the
Documentation in any form, on any media or via any
Electronic Distribution Mechanism or other method now
known or later discovered, and to sublicense the foregoing
rights to third parties through multiple tiers of sublicensees in
accordance with the terms of this License.

The license rights granted in this Section 2.1 ("Initial Writer
Grant") are effective on the date Initial Writer first distributes
Original Documentation under the terms of this License.

2.2. Contributor Grant.

Each Contributor hereby grants You a world-wide, royalty-
free, non-exclusive license to use, reproduce, prepare
Modifications of, compile, publicly perform, publicly display,
demonstrate, market, disclose and distribute the
Documentation in any form, on any media or via any
Electronic Distribution Mechanism or other method now
known or later discovered, and to sublicense the foregoing
rights to third parties through multiple tiers of sublicensees in
accordance with the terms of this License.

The license rights granted in this Section 2.2 ("Contributor
Grant") are effective on the date Contributor first makes
Commercial Use of the Documentation.

3.0 DISTRIBUTION OBLIGATIONS.

3.1. Application of License.

The Modifications which You create or to which You
contribute are governed by the terms of this License, including
without limitation Section 2.2 ("Contributor Grant"). The
Documentation may be distributed only under the terms of this
License or a future version of this License released in
accordance with Section 5.0 ("Versions of the License"), and
You must include a copy of this License with every copy of the
Documentation You distribute. You may not offer or impose
any terms that alter or restrict the applicable version of this
License or the recipients' rights hereunder. However, You may
include an additional document offering the additional rights
described in Section 3.5 ("Required Notices").

 3.2. Availability of Documentation.

Any Modification which You create or to which You
contribute must be made available publicly in Editable Form
under the terms of this License via a fixed medium or an
accepted Electronic Distribution Mechanism.

3.3. Description of Modifications.

All Documentation to which You contribute must identify the
changes You made to create that Documentation and the date
of any change. You must include a prominent statement that
the Modification is derived, directly or indirectly, from
Original Documentation provided by the Initial Writer and

Porting Excel/VBA to Calc/StarBasic 57

Public Documentation License, Version 1.0

include the name of the Initial Writer in the Documentation or
via an electronic link that describes the origin or ownership of
the Documentation. The foregoing change documentation may
be created by using an electronic program that automatically
tracks changes to the Documentation, and such changes must
be available publicly for at least five years following release of
the changed Documentation.

3.4. Intellectual Property Matters.

Contributor represents that Contributor believes that
Contributor's Modifications are Contributor's original creation
(s) and/or Contributor has sufficient rights to grant the rights
conveyed by this License.

3.5. Required Notices.

You must duplicate the notice in the Appendix in each file of
the Documentation. If it is not possible to put such notice in a
particular Documentation file due to its structure, then You
must include such notice in a location (such as a relevant
directory) where a reader would be likely to look for such a
notice, for example, via a hyperlink in each file of the
Documentation that takes the reader to a page that describes
the origin and ownership of the Documentation. If You
created one or more Modification(s) You may add your name
as a Contributor to the notice described in the Appendix.

You must also duplicate this License in any Documentation
file (or with a hyperlink in each file of the Documentation)
where You describe recipients' rights or ownership rights.

You may choose to offer, and to charge a fee for, warranty,
support, indemnity or liability obligations to one or more
recipients of Documentation. However, You may do so only on
Your own behalf, and not on behalf of the Initial Writer or any
Contributor. You must make it absolutely clear than any such
warranty, support, indemnity or liability obligation is offered
by You alone, and You hereby agree to indemnify the Initial
Writer and every Contributor for any liability incurred by the
Initial Writer or such Contributor as a result of warranty,
support, indemnity or liability terms You offer.

 3.6. Larger Works.

You may create a Larger Work by combining Documentation
with other documents not governed by the terms of this
License and distribute the Larger Work as a single product. In
such a case, You must make sure the requirements of this
License are fulfilled for the Documentation.

4.0 APPLICATION OF THIS LICENSE.

This License applies to Documentation to which the Initial
Writer has attached this License and the notice in the
Appendix.

5.0 VERSIONS OF THE LICENSE.

5.1. New Versions.

Initial Writer may publish revised and/or new versions of the
License from time to time. Each version will be given a
distinguishing version number.

5.2. Effect of New Versions.

Once Documentation has been published under a particular
version of the License, You may always continue to use it

under the terms of that version. You may also choose to use
such Documentation under the terms of any subsequent version
of the License published by __________________ [Insert
name of the foundation, company, Initial Writer, or whoever
may modify this License]. No one other than
________________________[Insert name of the foundation,
company, Initial Writer, or whoever may modify this License]
has the right to modify the terms of this License. Filling in the
name of the Initial Writer, Original Documentation or
Contributor in the notice described in the Appendix shall not
be deemed to be Modifications of this License.

6.0 DISCLAIMER OF WARRANTY.

DOCUMENTATION IS PROVIDED UNDER THIS
LICENSE ON AN "AS IS'' BASIS, WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES
THAT THE DOCUMENTATION IS FREE OF DEFECTS,
MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE
QUALITY, ACCURACY, AND PERFORMANCE OF THE
DOCUMENTATION IS WITH YOU. SHOULD ANY
DOCUMENTATION PROVE DEFECTIVE IN ANY
RESPECT, YOU (NOT THE INITIAL WRITER OR ANY
OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION.
THIS DISCLAIMER OF WARRANTY CONSTITUTES AN
ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY
DOCUMENTATION IS AUTHORIZED HEREUNDER
EXCEPT UNDER THIS DISCLAIMER.

7.0 TERMINATION.

This License and the rights granted hereunder will terminate
automatically if You fail to comply with terms herein and fail
to cure such breach within 30 days of becoming aware of the
breach. All sublicenses to the Documentation which are
properly granted shall survive any termination of this License.
Provisions which, by their nature, must remain in effect beyond
the termination of this License shall survive.

8.0 LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
THEORY, WHETHER IN TORT (INCLUDING
NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL
THE INITIAL WRITER, ANY OTHER CONTRIBUTOR, OR
ANY DISTRIBUTOR OF DOCUMENTATION, OR ANY
SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO
ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF
ANY CHARACTER INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL,
WORK STOPPAGE, COMPUTER FAILURE OR
MALFUNCTION, OR ANY AND ALL OTHER DAMAGES
OR LOSSES ARISING OUT OF OR RELATING TO THE
USE OF THE DOCUMENTATION, EVEN IF SUCH PARTY
SHALL HAVE BEEN INFORMED OF THE POSSIBILITY
OF SUCH DAMAGES.

9.0 U.S. GOVERNMENT END USERS.

If Documentation is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in
Documentation will be only as set forth in this Agreement; this
is in accordance with 48 CFR 227.7201 through 227.7202-4

Porting Excel/VBA to Calc/StarBasic 58

Public Documentation License, Version 1.0

(for Department of Defense (DOD) acquisitions) and with 48
CFR 2.101 and 12.212 (for non-DOD acquisitions).

10.0 MISCELLANEOUS.

This License represents the complete agreement concerning the
subject matter hereof. If any provision of this License is held to
be unenforceable, such provision shall be reformed only to the
extent necessary to make it enforceable. This License shall be
governed by California law, excluding its conflict-of-law
provisions. With respect to disputes or any litigation relating to
this License, the losing party is responsible for costs, including
without limitation, court costs and reasonable attorneys' fees
and expenses. The application of the United Nations
Convention on Contracts for the International Sale of Goods is
expressly excluded. Any law or regulation which provides that
the language of a contract shall be construed against the drafter
shall not apply to this License.

Appendix

Public Documentation License Notice

The contents of this Documentation are subject to the Public

Documentation License Version 1.0 (the "License"); you may
only use this Documentation if you comply with the terms of
this License. A copy of the License is available at
http://www.openoffice.org/licenses/PDL.rtf.

The Original Documentation is _________________. The
Initial Writer of the Original Documentation is
______________________ (C) ____. All Rights Reserved.
(Initial Writer contact(s):_______________[Insert
hyperlink/alias].)

Contributor(s):
______________________________________.

Portions created by ______ are Copyright (C)_________[Insert
year(s)]. All Rights Reserved. (Contributor contact(s):
________________[Insert hyperlink/alias]).

Note: The text of this Appendix may differ slightly from the
text of the notices in the files of the Original Documentation.
You should use the text of this Appendix rather than the text
found in the Original Documentation for Your Modifications.

Porting Excel/VBA to Calc/StarBasic 59

